Bibliotecas

  library(knitr)
  library(semPlot)
  library(tidyverse)
  library(psych)
  library(lavaan)

Dados

# abra o arquivo direto da internet
con<-url("http://www.labape.com.br/rprimi/SEM/exerc18/ex3b.RData") 
load(con) 

# explorando a base
  names(pscm_acq1$recoded_data_c)
##   [1] "p.2.1"  "p.2.6"  "p.2.11" "p.2.20" "p.2.16" "p.2.25" "p.3.1" 
##   [8] "p.3.6"  "p.3.11" "p.3.16" "p.3.21" "p.2.2"  "p.2.7"  "p.2.17"
##  [15] "p.2.12" "p.2.26" "p.2.21" "p.3.2"  "p.3.7"  "p.3.12" "p.3.17"
##  [22] "p.3.23" "p.2.3"  "p.2.8"  "p.2.22" "p.2.27" "p.2.13" "p.2.30"
##  [29] "p.3.3"  "p.3.8"  "p.3.13" "p.3.18" "p.3.24" "p.2.9"  "p.2.14"
##  [36] "p.2.4"  "p.2.29" "p.2.18" "p.2.23" "p.2.32" "p.3.4"  "p.3.9" 
##  [43] "p.3.14" "p.3.19" "p.3.25" "p.2.5"  "p.2.19" "p.2.24" "p.2.10"
##  [50] "p.2.15" "p.2.31" "p.2.33" "p.3.5"  "p.3.10" "p.3.15" "p.3.20"
##  [57] "p.3.26" "p.4.4"  "p.4.11" "p.4.16" "p.4.24" "p.5.4"  "p.5.11"
##  [64] "p.5.16" "p.5.24" "p.5.2"  "p.5.8"  "p.5.14" "p.5.19" "p.5.22"
##  [71] "p.4.3"  "p.4.13" "p.4.19" "p.4.23" "p.4.27" "p.4.7"  "p.4.12"
##  [78] "p.4.20" "p.4.28" "p.4.9"  "p.4.17" "p.4.21" "p.4.25" "p.4.6" 
##  [85] "p.4.14" "p.4.22" "p.5.1"  "p.5.10" "p.5.21" "p.5.6"  "p.5.13"
##  [92] "p.5.17" "p.4.1"  "p.4.5"  "p.4.10" "p.4.15" "p.5.3"  "p.5.7" 
##  [99] "p.5.20" "p.5.12" "p.5.15" "p.5.18" "p.5.5"  "p.5.9"  "p.5.23"
## [106] "p.4.2"  "p.4.8"  "p.4.18" "p.4.26" "means"  "sd"
  class(pscm_acq1$recoded_data_c)
## [1] "data.frame"
  names(dic)
##  [1] "X__1"        "test_ord"    "teste"       "coditem"     "factor"     
##  [6] "factor0"     "factor2"     "factor3"     "pole"        "order"      
## [11] "coditem2"    "P_S"         "domain"      "facet"       "pole2"      
## [16] "seman_pairs" "ord_esc"     "item_text"   "CodItem3"    "port_text1" 
## [21] "engl_text1"  "engl_text2"  "Pairs"       "carol_eng"
  itens_senna <- names(dic)[c(3:5, 9, 14, 18) ]

# Seleciona itens do senna
  dic_senna <- dic %>% filter(teste=="senna" & factor != "chk_0") %>%
    select(itens_senna) %>% arrange(factor, pole, facet) 

# seleciona itens da base
  data <- pscm_acq1$recoded_data_c %>% 
      select(dic_senna$coditem)

# renomeia itens no dicionario e na base para incluir o dominio no nome
  dic_senna$coditem <- paste(dic_senna$factor, dic_senna$coditem, sep="_")
  dic_senna$key <- ifelse(dic_senna$pole ==1, 1, -1)
  names(data) <-paste(dic_senna$factor, names(data), sep="_")
  
# Mostra dicionário
  kable(dic_senna)
teste coditem factor pole facet item_text key
senna A_0_p.2.11 A_0 0 Mod Eu nunca estou satisfeito(a) com os outros. -1
senna A_0_p.2.20 A_0 0 Resp Não me importo se tiver que magoar alguém para conseguir o que eu quero. -1
senna A_0_p.2.1 A_0 1 Cmp Eu me preocupo com o que acontece com os outros. 1
senna A_0_p.2.6 A_0 1 Cmp Não sou egoísta e gosto de ajudar os outros. 1
senna A_0_p.2.16 A_0 1 Resp Respeito autoridades (professores, diretores, etc.). 1
senna A_0_p.2.25 A_0 1 Tru Acredito no melhor das pessoas. 1
senna A_1_p.3.1 A_1 1 Cmp Ser legal com os outros. 1
senna A_1_p.3.6 A_1 1 Cmp Saber quando seus amigos precisam de ajuda mesmo que eles não falem nada. 1
senna A_1_p.3.11 A_1 1 Cmp Perceber o que as outras pessoas estão sentindo. 1
senna A_1_p.3.16 A_1 1 Resp Ouvir respeitosamente a opinião dos outros? 1
senna A_1_p.3.21 A_1 1 Resp Tratar bem e respeitosamente as pessoas de que você não gosta. 1
senna C_0_p.2.17 C_0 0 Ord Sou bagunceiro com minhas coisas. -1
senna C_0_p.2.26 C_0 0 SD Deixo tudo para última hora. -1
senna C_0_p.2.2 C_0 1 Achv Sou um aluno dedicado e trabalhador. 1
senna C_0_p.2.7 C_0 1 Achv Sempre faço as tarefas da escola da melhor forma possível. 1
senna C_0_p.2.12 C_0 1 Ord Gosto de manter o meu material escolar muito bem organizado. 1
senna C_0_p.2.21 C_0 1 SD Termino minhas tarefas no prazo planejado. 1
senna C_1_p.3.2 C_1 1 Achv Colocar o esforço e tempo necessário nas suas tarefas para obter bons resultados. 1
senna C_1_p.3.7 C_1 1 Achv Se desafiar para melhorar seus resultados. 1
senna C_1_p.3.12 C_1 1 Conc Concentrar-se nas tarefas que está fazendo. 1
senna C_1_p.3.17 C_1 1 Conc Prestar atenção nas aulas. 1
senna C_1_p.3.23 C_1 1 SD Terminar todo seu dever de casa. 1
senna E_0_p.2.8 E_0 0 Assr Tenho vergonha de fazer perguntas durante a aula. -1
senna E_0_p.2.22 E_0 0 Soc Sou tímido(a), inibido(a). -1
senna E_0_p.2.27 E_0 0 Soc Falo pouco com os outros colegas da escola. -1
senna E_0_p.2.3 E_0 1 Act Sou muito alegre e animado(a). 1
senna E_0_p.2.13 E_0 1 Soc Gosto de estar na companhia dos outros. 1
senna E_0_p.2.30 E_0 1 Soc Sou desinibido(a) e me dou bem com os outros. 1
senna E_1_p.3.3 E_1 1 Act Fazer coisas engraçadas para os amigos darem risadas. 1
senna E_1_p.3.8 E_1 1 Assr Ser líder em uma atividade. 1
senna E_1_p.3.13 E_1 1 Assr Fazer perguntas ao professor durante as aulas. 1
senna E_1_p.3.18 E_1 1 Assr Expressar suas opiniões em uma discussão. 1
senna E_1_p.3.24 E_1 1 Soc Dar o primeiro passo para mostrar que você gosta de alguém. 1
senna N_0_p.2.9 N_0 0 LAngrVol Eu me descontrolo facilmente quando não consigo o que quero. -1
senna N_0_p.2.14 N_0 0 LAngrVol Eu me irrito com facilidade. -1
senna N_0_p.2.29 N_0 0 LAnx Fico nervoso(a) com facilidade. -1
senna N_0_p.2.32 N_0 0 LDep Fico triste de uma hora para a outra. -1
senna N_0_p.2.4 N_0 1 LAngrVol Sou calmo(a) e controlo bem meu estresse. 1
senna N_0_p.2.18 N_0 1 LAnx Sou relaxado e não fico estressado à toa. 1
senna N_0_p.2.23 N_0 1 LAnx Após um susto, eu me acalmo facilmente. 1
senna N_1_p.3.4 N_1 1 LAngrVol Manter-se calmo, sem estourar, quando provocado(a). 1
senna N_1_p.3.9 N_1 1 LAnx Lidar com tranquilidade com uma situação difícil ou estressante. 1
senna N_1_p.3.14 N_1 1 LAnx Lidar com estresse sem se preocupar muito. 1
senna N_1_p.3.19 N_1 1 LAnx Manter a calma quando alguma coisa dá errado ao invés de ficar nervoso 1
senna N_1_p.3.25 N_1 1 LDep Manter-se bem mesmo quando alguma coisa ruim acontece com você. 1
senna O_0_p.2.19 O_0 0 CrImg Não tenho muita imaginação. -1
senna O_0_p.2.24 O_0 0 CrImg Dificilmente tenho ideias originais. -1
senna O_0_p.2.5 O_0 1 Aes Me interesso por vários tipos de obras de arte, de música e ou de literatura. 1
senna O_0_p.2.10 O_0 1 CrImg Sou original, tenho ideias novas. 1
senna O_0_p.2.15 O_0 1 CrImg Sou criativo, gosto de encontrar maneiras diferentes de fazer as coisas. 1
senna O_0_p.2.31 O_0 1 IntCur Gosto de refletir e brincar com minhas ideias. 1
senna O_0_p.2.33 O_0 1 IntCur Muitos assuntos despertam minha curiosidade. 1
senna O_1_p.3.5 O_1 1 Aes Criar coisas artísticas, como um poema. 1
senna O_1_p.3.10 O_1 1 CrImg Criar coisas novas. 1
senna O_1_p.3.15 O_1 1 CrImg Inventar jogos ou brincadeiras facilmente. 1
senna O_1_p.3.20 O_1 1 IntCur Aprender sobre novas culturas. 1
senna O_1_p.3.26 O_1 1 IntCur Descobrir como algo funciona. 1
Correlação entre as variáveis
  library(d3heatmap)
   data %>% 
      cor(use="pair") %>%
      d3heatmap( 
        symn= TRUE, 
        symm = TRUE, 
        k_row = 5, 
        k_col = 5
        )
10.5390.4860.4420.4380.3390.4210.4260.30.4210.3330.3080.1940.1330.2040.2220.1050.1570.2020.3950.1780.0850.1580.2460.1980.1230.2090.230.1520.0990.1210.2180.1730.1460.2880.1940.1550.1140.0740.0570.1430.1510.032-0.035-0.143-0.113-0.112-0.155-0.185-0.097-0.143-0.196-0.25-0.198-0.296-0.353-0.4590.53910.440.4340.4630.2920.3880.3680.3580.3220.330.2630.2290.250.3480.1720.1830.2110.1780.3530.1970.0580.0830.3680.2390.120.140.1890.1780.0950.0760.120.0840.1660.2690.2090.1370.0470.103-0.0760.2280.15-0.075-0.051-0.088-0.182-0.1440.003-0.23-0.193-0.125-0.155-0.202-0.154-0.258-0.367-0.3560.4860.4410.3870.4360.2230.3380.380.2020.3040.2210.2090.1370.1450.1530.2690.2660.1650.1650.3270.1740.1340.2270.3610.2760.20.2240.260.2770.2210.2130.2760.1840.0880.2650.1940.1120.1710.044-0.0160.1490.0910.024-0.138-0.166-0.179-0.069-0.154-0.162-0.115-0.249-0.203-0.182-0.196-0.159-0.23-0.3020.4420.4340.38710.5730.4020.4330.3680.3230.3090.2820.2630.2180.2790.3330.3470.3420.2630.290.3530.2680.330.3220.2990.2750.2360.2250.2430.2550.2440.1780.2560.0970.220.1670.0350.1770.0530.15-0.0850.1540.032-0.0680.042-0.171-0.034-0.188-0.223-0.142-0.159-0.241-0.303-0.241-0.18-0.237-0.31-0.3890.4380.4630.4360.57310.4040.4120.4730.3780.2460.1780.2920.2480.2510.3490.3380.2140.1020.2290.2280.2730.1590.1060.2340.2620.1320.1090.1660.1370.1180.0190.160.1710.1750.2130.1730.2140.1150.275-0.1130.2120.1350.0740.0540.038-0.161-0.248-0.104-0.142-0.207-0.267-0.137-0.184-0.138-0.139-0.362-0.3370.3390.2920.2230.4020.40410.2070.3260.1830.140.1270.1410.1150.0930.0790.1270.1630.1730.1570.0860.1060.1350.0880.20.1070.0960.1140.0750.1170.0260.0320.1070.0250.0430.188-0.0110.215-0.0690.2030.0110.1880.0350.118-0.001-0.181-0.072-0.245-0.151-0.041-0.052-0.211-0.246-0.212-0.105-0.099-0.295-0.3350.4210.3880.3380.4330.4120.20710.3730.4240.3840.2410.3040.240.1520.1980.194-0.0050.0740.210.2340.1470.1570.1580.220.2390.1340.2710.2460.2040.0210.0670.0740.1270.1960.2640.1360.0460.0840.145-0.047-0.0110.027-0.0140.015-0.113-0.045-0.0460-0.079-0.182-0.225-0.269-0.206-0.248-0.206-0.348-0.3070.4260.3680.380.3680.4730.3260.37310.430.1810.1660.2220.2570.1890.1620.2690.1610.120.1180.0780.0770.1250.1460.260.2540.0910.0970.2540.1660.0980.080.1990.2050.1290.150.2130.1580.0740.077-0.0280.0610.085-0.006-0.06-0.107-0.162-0.238-0.298-0.052-0.149-0.152-0.063-0.183-0.18-0.131-0.331-0.4110.30.3580.2020.3230.3780.1830.4240.4310.0720.0350.1140.0920.0450.1630.109-0.0140.0720.0850.0680.0470.0910.1190.1640.1270.0560.0920.122-0.026-0.014-0.111-0.0370.0750.1610.1970.1910.059-0.027-0.019-0.138-0.004-0.106-0.1280.107-0.120.036-0.080.029-0.103-0.086-0.137-0.023-0.137-0.254-0.252-0.424-0.2870.4210.3220.3040.3090.2460.140.3840.1810.07210.4150.2830.3660.1650.1640.1850.180.1630.2930.3070.2460.150.1070.2650.1820.1430.280.2590.1960.1390.0850.2880.1950.2590.2550.2150.0510.0670.0240.0210.1410.230.063-0.071-0.1250.0550.091-0.071-0.124-0.162-0.192-0.339-0.361-0.056-0.154-0.183-0.2880.3330.330.2210.2820.1780.1270.2410.1660.0350.41510.3210.2440.150.1930.1330.1270.0610.1480.2460.1110.0290.1570.110.1180.0320.1620.1780.170.090.0830.3050.1720.150.1460.140.2040.1220.0630.1010.1410.276-0.047-0.002-0.049-0.075-0.055-0.178-0.147-0.087-0.1-0.135-0.258-0.066-0.286-0.17-0.2210.3080.2630.2090.2630.2920.1410.3040.2220.1140.2830.32110.4570.1710.1380.1860.1770.032-0.0170.1670.1880.080.1080.2140.2750.1330.2640.1750.1510.0970.0590.110.1960.1360.3220.2610.0870.1390.0950.0010.2630.3090.0720.038-0.061-0.186-0.2010.014-0.091-0.081-0.18-0.227-0.225-0.325-0.311-0.321-0.2420.1940.2290.1370.2180.2480.1150.240.2570.0920.3660.2440.45710.2030.2950.2680.0280.008-0.0150.160.0860.1840.2360.3460.1820.0520.1950.2530.2370.1790.0850.1380.2850.1790.230.1480.026-0.0210.1240.0310.2110.2770.073-0.077-0.178-0.139-0.0350.076-0.085-0.275-0.332-0.261-0.348-0.2-0.17-0.272-0.3310.1330.250.1450.2790.2510.0930.1520.1890.0450.1650.150.1710.20310.3510.3360.3770.2790.0920.210.130.1810.1760.2720.2910.1650.0550.0680.1870.2160.240.1510.1310.008-0.076-0.0090.0240.1350.0810.0710.1680.1140.1340.070.054-0.104-0.088-0.0940.021-0.308-0.053-0.171-0.147-0.096-0.075-0.102-0.2390.2040.3480.1530.3330.3490.0790.1980.1620.1630.1640.1930.1380.2950.35110.2720.3330.2650.1470.1910.2680.1070.0910.2720.1670.2180.1170.1320.1620.1860.0610.0270.1210.0830.0550.1210.0550.1930.1550.0440.2240.2030.0150.065-0.131-0.197-0.1830.007-0.167-0.244-0.202-0.066-0.187-0.152-0.139-0.17-0.2770.2220.1720.2690.3470.3380.1270.1940.2690.1090.1850.1330.1860.2680.3360.27210.2840.1610.0490.1710.2240.2080.2490.2490.110.0440.0160.0880.1050.230.260.2030.2280.2460.1430.1570.0750.1340.2710.1090.3230.2870.2080.013-0.082-0.154-0.153-0.228-0.129-0.255-0.146-0.024-0.23-0.137-0.238-0.032-0.2170.1050.1830.2660.3420.2140.163-0.0050.161-0.0140.180.1270.1770.0280.3770.3330.28410.4290.3580.2270.2750.2350.2280.3370.3360.30.0890.2890.2440.3260.2360.140.0010.1390.015-0.0020.1740.1860.2430.0850.1780.0850.0670.079-0.141-0.039-0.145-0.158-0.101-0.239-0.183-0.201-0.256-0.1-0.116-0.027-0.2060.1570.2110.1650.2630.1020.1730.0740.120.0720.1630.0610.0320.0080.2790.2650.1610.42910.3010.2930.2060.1850.2160.3250.1680.2250.1620.130.0690.2130.1110.112-0.0050.173-0.002-0.0160.1550.20.0060.063-0.0010.0450.1040.258-0.066-0.115-0.184-0.185-0.12-0.295-0.047-0.135-0.14-0.085-0.261-0.144-0.2520.2020.1780.1650.290.2290.1570.210.1180.0850.2930.148-0.017-0.0150.0920.1470.0490.3580.30110.2140.2260.1650.1890.2780.1450.110.1470.2030.2020.1110.070.1570.0310.1490.0620.0260.133-0.004-0.0070.0310.010.0140.0050.016-0.1060.095-0.021-0.145-0.015-0.139-0.136-0.188-0.131-0.095-0.064-0.201-0.1580.3950.3530.3270.3530.2280.0860.2340.0780.0680.3070.2460.1670.160.210.1910.1710.2270.2930.21410.370.3020.2390.360.2650.2340.1420.0990.2430.2520.1730.3420.2380.110.1650.080.2040.110.080.0420.1890.1390.0440.025-0.106-0.143-0.097-0.184-0.121-0.111-0.23-0.233-0.173-0.023-0.195-0.134-0.1580.1780.1970.1740.2680.2730.1060.1470.0770.0470.2460.1110.1880.0860.130.2680.2240.2750.2060.2260.3710.2060.210.2910.1310.2540.1980.0640.2230.1240.1390.2280.2290.0910.0650.0980.1570.0220.1090.0050.2330.2110.2020.098-0.04-0.057-0.147-0.076-0.233-0.219-0.165-0.172-0.13-0.0420.027-0.141-0.0990.0850.0580.1340.330.1590.1350.1570.1250.0910.150.0290.080.1840.1810.1070.2080.2350.1850.1650.3020.20610.2830.1470.1280.2290.0940.1920.3120.2620.2230.2390.1240.1060.09-0.0470.2270.1140.1250.0020.1150.083-0.065-0.002-0.087-0.032-0.081-0.186-0.049-0.157-0.241-0.255-0.282-0.028-0.094-0.056-0.1160.1580.0830.2270.3220.1060.0880.1580.1460.1190.1070.1570.1080.2360.1760.0910.2490.2280.2160.1890.2390.210.28310.2050.1350.0660.0780.2710.2510.1520.1870.3070.1120.050.044-0.1020.1240.023-0.0230.0930.0120.0130.0620.091-0.1950.136-0.076-0.14-0.271-0.249-0.25-0.321-0.385-0.186-0.104-0.158-0.2750.2460.3680.3610.2990.2340.20.220.260.1640.2650.110.2140.3460.2720.2720.2490.3370.3250.2780.360.2910.1470.20510.3240.3060.2530.2710.2430.2410.1390.0980.0530.1690.0890.170.166-0.0070.059-0.0430.2620.1720.0870.098-0.174-0.137-0.156-0.139-0.067-0.185-0.216-0.19-0.127-0.202-0.181-0.235-0.2270.1980.2390.2760.2750.2620.1070.2390.2540.1270.1820.1180.2750.1820.2910.1670.110.3360.1680.1450.2650.1310.1280.1350.32410.2980.1780.1990.1990.1890.130.2040.0840.0720.0850.0270.1490.0810.0250.060.0970.0860.0260.24-0.12-0.212-0.068-0.0620.02-0.14-0.134-0.221-0.128-0.18-0.19-0.236-0.070.1230.120.20.2360.1320.0960.1340.0910.0560.1430.0320.1330.0520.1650.2180.0440.30.2250.110.2340.2540.2290.0660.3060.29810.1470.2240.2980.3140.1920.1230.070.0290.1410.0190.0470.0250.021-0.1120.1980.114-0.0620.081-0.133-0.008-0.181-0.046-0.093-0.011-0.148-0.249-0.095-0.048-0.047-0.15-0.1750.2090.140.2240.2250.1090.1140.2710.0970.0920.280.1620.2640.1950.0550.1170.0160.0890.1620.1470.1420.1980.0940.0780.2530.1780.14710.2510.2170.0980.2330.2880.2240.2190.1290.0810.1250.0730.028-0.051-0.034-0.077-0.0010.089-0.163-0.02-0.104-0.161-0.04-0.111-0.077-0.298-0.221-0.159-0.015-0.115-0.1360.230.1890.260.2430.1660.0750.2460.2540.1220.2590.1780.1750.2530.0680.1320.0880.2890.130.2030.0990.0640.1920.2710.2710.1990.2240.25110.3340.2420.220.2240.1550.1920.227-0.0190.132-0.020.0710.0890.1140.034-0.117-0.106-0.237-0.099-0.132-0.175-0.083-0.191-0.265-0.379-0.473-0.143-0.115-0.187-0.2790.1520.1780.2770.2550.1370.1170.2040.166-0.0260.1960.170.1510.2370.1870.1620.1050.2440.0690.2020.2430.2230.3120.2510.2430.1990.2980.2170.33410.4150.3590.2760.0780.1010.2260.040.0490.0660.0360.1910.0860.1830.038-0.093-0.308-0.032-0.224-0.103-0.164-0.122-0.222-0.429-0.2540.0210.006-0.036-0.190.0990.0950.2210.2440.1180.0260.0210.098-0.0140.1390.090.0970.1790.2160.1860.230.3260.2130.1110.2520.1240.2620.1520.2410.1890.3140.0980.2420.41510.3260.2730.1560.0250.1420.1970.0660.0720.0180.1670.0350.2010.091-0.014-0.223-0.099-0.169-0.143-0.029-0.224-0.257-0.252-0.1980.013-0.1420.012-0.0660.1210.0760.2130.1780.0190.0320.0670.08-0.1110.0850.0830.0590.0850.240.0610.260.2360.1110.070.1730.1390.2230.1870.1390.130.1920.2330.220.3590.32610.2980.1170.0320.0550.1030.0470.125-0.0530.210.020.0330.115-0.152-0.238-0.124-0.172-0.196-0.089-0.129-0.258-0.414-0.332-0.1020.0340.054-0.0770.2180.120.2760.2560.160.1070.0740.199-0.0370.2880.3050.110.1380.1510.0270.2030.140.1120.1570.3420.2280.2390.3070.0980.2040.1230.2880.2240.2760.2730.29810.2530.190.087-0.0780.112-0.003-0.0050.1830.0730.190.145-0.043-0.206-0.0790.008-0.303-0.092-0.08-0.129-0.292-0.248-0.071-0.0920.029-0.1140.1730.0840.1840.0970.1710.0250.1270.2050.0750.1950.1720.1960.2850.1310.1210.2280.001-0.0050.0310.2380.2290.1240.1120.0530.0840.070.2240.1550.0780.1560.1170.25310.0880.1220.189-0.0690.0270.034-0.0060.0910.1970.039-0.137-0.139-0.2450.122-0.161-0.159-0.126-0.087-0.055-0.139-0.083-0.071-0.038-0.0150.1460.1660.0880.220.1750.0430.1960.1290.1610.2590.150.1360.1790.0080.0830.2460.1390.1730.1490.110.0910.1060.050.1690.0720.0290.2190.1920.1010.0250.0320.190.08810.1140.0880.0570.0620.1120.0480.1040.0890.072-0.093-0.0820.0140.025-0.177-0.049-0.203-0.092-0.136-0.247-0.004-0.215-0.082-0.1430.2880.2690.2650.1670.2130.1880.2640.150.1970.2550.1460.3220.23-0.0760.0550.1430.015-0.0020.0620.1650.0650.090.0440.0890.0850.1410.1290.2270.2260.1420.0550.0870.1220.11410.290.0710.0660.1180.0660.1930.179-0.078-0.143-0.127-0.108-0.109-0.135-0.23-0.112-0.212-0.155-0.212-0.131-0.198-0.358-0.3160.1940.2090.1940.0350.173-0.0110.1360.2130.1910.2150.140.2610.148-0.0090.1210.157-0.002-0.0160.0260.080.098-0.047-0.1020.170.0270.0190.081-0.0190.040.1970.103-0.0780.1890.0880.2910.0180.092-0.024-0.0120.0430.2530.09-0.024-0.077-0.229-0.07-0.117-0.076-0.108-0.101-0.015-0.12-0.067-0.206-0.309-0.0680.1550.1370.1120.1770.2140.2150.0460.1580.0590.0510.2040.0870.0260.0240.0550.0750.1740.1550.1330.2040.1570.2270.1240.1660.1490.0470.1250.1320.0490.0660.0470.112-0.0690.0570.0710.01810.2480.1470.1410.071-0.029-0.0880.210.061-0.211-0.298-0.289-0.122-0.24-0.209-0.101-0.1180.009-0.135-0.151-0.1260.1140.0470.1710.0530.115-0.0690.0840.074-0.0270.0670.1220.139-0.0210.1350.1930.1340.1860.2-0.0040.110.0220.1140.023-0.0070.0810.0250.073-0.020.0660.0720.125-0.0030.0270.0620.0660.0920.24810.1130.0960.140.0770.1210.0480.075-0.12-0.104-0.239-0.113-0.135-0.0910.004-0.005-0.01-0.2220.136-0.0350.0740.1030.0440.150.2750.2030.1450.077-0.0190.0240.0630.0950.1240.0810.1550.2710.2430.006-0.0070.080.1090.125-0.0230.0590.0250.0210.0280.0710.0360.018-0.053-0.0050.0340.1120.118-0.0240.1470.11310.110.1840.1870.1270.0820.097-0.145-0.192-0.063-0.008-0.1-0.0840.004-0.1710.068-0.001-0.129-0.1360.057-0.076-0.016-0.085-0.1130.011-0.047-0.028-0.1380.0210.1010.0010.0310.0710.0440.1090.0850.0630.0310.0420.0050.0020.093-0.0430.06-0.112-0.0510.0890.1910.1670.210.183-0.0060.0480.066-0.0120.1410.0960.111-0.0030.0790.0550.03-0.229-0.182-0.019-0.177-0.114-0.179-0.204-0.287-0.2280.07-0.1650.085-0.0130.1430.2280.1490.1540.2120.188-0.0110.061-0.0040.1410.1410.2630.2110.1680.2240.3230.178-0.0010.010.1890.2330.1150.0120.2620.0970.198-0.0340.1140.0860.0350.020.0730.0910.1040.1930.0430.0710.140.184-0.00310.4650.171-0.0170.064-0.132-0.1340.018-0.158-0.114-0.110.022-0.014-0.125-0.159-0.143-0.1610.1510.150.0910.0320.1350.0350.0270.085-0.1060.230.2760.3090.2770.1140.2030.2870.0850.0450.0140.1390.2110.0830.0130.1720.0860.114-0.0770.0340.1830.2010.0330.190.1970.0890.1790.253-0.0290.0770.1870.0790.46510.1610.1280.078-0.049-0.104-0.083-0.251-0.148-0.1530.074-0.162-0.179-0.148-0.038-0.0570.032-0.0750.024-0.0680.0740.118-0.014-0.006-0.1280.063-0.0470.0720.0730.1340.0150.2080.0670.1040.0050.0440.202-0.0650.0620.0870.026-0.062-0.001-0.1170.0380.0910.1150.1450.0390.072-0.0780.09-0.0880.1210.1270.0550.1710.1611-0.0350.0830.0140.040.0170.008-0.025-0.074-0.05-0.03-0.0930.035-0.094-0.03-0.035-0.051-0.1380.0420.054-0.0010.015-0.060.107-0.071-0.0020.038-0.0770.070.0650.0130.0790.2580.0160.0250.098-0.0020.0910.0980.240.0810.089-0.106-0.093-0.014-0.152-0.043-0.137-0.093-0.143-0.0240.210.0480.0820.03-0.0170.128-0.03510.164-0.029-0.129-0.007-0.096-0.261-0.0160.1250.12-0.073-0.0520.0070.106-0.143-0.088-0.166-0.1710.038-0.181-0.113-0.107-0.12-0.125-0.049-0.061-0.1780.054-0.131-0.082-0.141-0.066-0.106-0.106-0.04-0.087-0.195-0.174-0.12-0.133-0.163-0.237-0.308-0.223-0.238-0.206-0.139-0.082-0.127-0.0770.0610.0750.097-0.2290.0640.0780.0830.1641-0.089-0.0180.0880.102-0.0480.0040.30.1860.0270.0480.0210.168-0.113-0.182-0.179-0.034-0.161-0.072-0.045-0.1620.0360.055-0.075-0.186-0.139-0.104-0.197-0.154-0.039-0.1150.095-0.143-0.057-0.0320.136-0.137-0.212-0.008-0.02-0.099-0.032-0.099-0.124-0.079-0.2450.014-0.108-0.229-0.211-0.12-0.145-0.182-0.132-0.0490.014-0.029-0.0891-0.0260.03-0.0870.0450.126-0.0190.1520.0290.0280.114-0.076-0.112-0.144-0.069-0.188-0.248-0.245-0.046-0.238-0.080.091-0.055-0.201-0.035-0.088-0.183-0.153-0.145-0.184-0.021-0.097-0.147-0.081-0.076-0.156-0.068-0.181-0.104-0.132-0.224-0.169-0.1720.0080.1220.025-0.109-0.07-0.298-0.104-0.192-0.019-0.134-0.1040.04-0.129-0.018-0.02610.2080.0530.1380.0820.007-0.061-0.0390.0060.0540.113-0.1550.003-0.154-0.223-0.104-0.1510-0.2980.029-0.071-0.1780.0140.076-0.0940.007-0.228-0.158-0.185-0.145-0.184-0.076-0.186-0.14-0.139-0.062-0.046-0.161-0.175-0.103-0.143-0.196-0.303-0.161-0.177-0.135-0.117-0.289-0.239-0.063-0.1770.018-0.0830.017-0.0070.0880.030.20810.0470.1010.090.0350.058-0.0920.07-0.041-0.015-0.185-0.23-0.162-0.142-0.142-0.041-0.079-0.052-0.103-0.124-0.147-0.091-0.0850.021-0.167-0.129-0.101-0.12-0.015-0.121-0.233-0.049-0.271-0.0670.02-0.093-0.04-0.083-0.164-0.029-0.089-0.092-0.159-0.049-0.23-0.076-0.122-0.113-0.008-0.114-0.158-0.2510.008-0.0960.102-0.0870.0530.04710.201-0.0010.0280.1070.060.105-0.0230.07-0.097-0.193-0.115-0.159-0.207-0.052-0.182-0.149-0.086-0.162-0.087-0.081-0.275-0.308-0.244-0.255-0.239-0.295-0.139-0.111-0.219-0.157-0.249-0.185-0.14-0.011-0.111-0.191-0.122-0.224-0.129-0.08-0.126-0.203-0.112-0.108-0.24-0.135-0.1-0.179-0.114-0.148-0.025-0.261-0.0480.0450.1380.1010.20110.030.0330.1030.0350.1310.1330.164-0.143-0.125-0.249-0.241-0.267-0.211-0.225-0.152-0.137-0.192-0.1-0.18-0.332-0.053-0.202-0.146-0.183-0.047-0.136-0.23-0.165-0.241-0.25-0.216-0.134-0.148-0.077-0.265-0.222-0.257-0.258-0.129-0.087-0.092-0.212-0.101-0.209-0.091-0.084-0.204-0.11-0.153-0.074-0.0160.0040.1260.0820.09-0.0010.0310.360.340.1590.0420.0520.051-0.196-0.155-0.203-0.303-0.137-0.246-0.269-0.063-0.023-0.339-0.135-0.227-0.261-0.171-0.066-0.024-0.201-0.135-0.188-0.233-0.172-0.255-0.321-0.19-0.221-0.249-0.298-0.379-0.429-0.252-0.414-0.292-0.055-0.136-0.155-0.015-0.1010.0040.004-0.2870.0220.074-0.050.1250.3-0.0190.0070.0350.0280.0330.3610.539-0.011-0.0080.090.231-0.25-0.202-0.182-0.241-0.184-0.212-0.206-0.183-0.137-0.361-0.258-0.225-0.348-0.147-0.187-0.23-0.256-0.14-0.131-0.173-0.13-0.282-0.385-0.127-0.128-0.095-0.221-0.473-0.254-0.198-0.332-0.248-0.139-0.247-0.212-0.12-0.118-0.005-0.171-0.228-0.014-0.162-0.030.120.1860.152-0.0610.0580.1070.1030.340.53910.0770.0570.1930.237-0.198-0.154-0.196-0.18-0.138-0.105-0.248-0.18-0.254-0.056-0.066-0.325-0.2-0.096-0.152-0.137-0.1-0.085-0.095-0.023-0.042-0.028-0.186-0.202-0.18-0.048-0.159-0.1430.0210.013-0.102-0.071-0.083-0.004-0.131-0.0670.009-0.010.0680.07-0.125-0.179-0.093-0.0730.0270.029-0.039-0.0920.060.0350.159-0.0110.07710.1610.1880.22-0.296-0.258-0.159-0.237-0.139-0.099-0.206-0.131-0.252-0.154-0.286-0.311-0.17-0.075-0.139-0.238-0.116-0.261-0.064-0.1950.027-0.094-0.104-0.181-0.19-0.047-0.015-0.1150.006-0.1420.034-0.092-0.071-0.215-0.198-0.206-0.135-0.222-0.001-0.165-0.159-0.1480.035-0.0520.0480.0280.0060.070.1050.1310.042-0.0080.0570.16110.1980.219-0.353-0.367-0.23-0.31-0.362-0.295-0.348-0.331-0.424-0.183-0.17-0.321-0.272-0.102-0.17-0.032-0.027-0.144-0.201-0.134-0.141-0.056-0.158-0.235-0.236-0.15-0.115-0.187-0.0360.0120.0540.029-0.038-0.082-0.358-0.309-0.1510.136-0.1290.085-0.143-0.038-0.0940.0070.0210.1140.054-0.041-0.0230.1330.0520.090.1930.1880.19810.464-0.459-0.356-0.302-0.389-0.337-0.335-0.307-0.411-0.287-0.288-0.221-0.242-0.331-0.239-0.277-0.217-0.206-0.252-0.158-0.158-0.099-0.116-0.275-0.227-0.07-0.175-0.136-0.279-0.19-0.066-0.077-0.114-0.015-0.143-0.316-0.068-0.126-0.035-0.136-0.013-0.161-0.057-0.030.1060.168-0.0760.113-0.0150.070.1640.0510.2310.2370.220.2190.4641C_1_p.3.23C_1_p.3.17C_1_p.3.12C_1_p.3.2C_0_p.2.2C_0_p.2.21A_0_p.2.16C_0_p.2.7C_0_p.2.12A_1_p.3.1A_1_p.3.16A_0_p.2.1A_0_p.2.6O_0_p.2.15O_0_p.2.10C_1_p.3.7O_1_p.3.10O_0_p.2.31O_1_p.3.15O_1_p.3.26E_1_p.3.24N_1_p.3.14N_1_p.3.19O_1_p.3.20O_0_p.2.5O_1_p.3.5A_1_p.3.21N_0_p.2.4N_1_p.3.9N_0_p.2.23N_1_p.3.4N_1_p.3.25A_0_p.2.25E_0_p.2.3E_0_p.2.30E_0_p.2.13E_1_p.3.13O_0_p.2.33E_1_p.3.8N_0_p.2.18A_1_p.3.11A_1_p.3.6E_1_p.3.3E_1_p.3.18N_0_p.2.32O_0_p.2.24E_0_p.2.8E_0_p.2.22A_0_p.2.11O_0_p.2.19N_0_p.2.9N_0_p.2.14N_0_p.2.29A_0_p.2.20E_0_p.2.27C_0_p.2.17C_0_p.2.26C_1_p.3.23C_1_p.3.17C_1_p.3.12C_1_p.3.2C_0_p.2.2C_0_p.2.21A_0_p.2.16C_0_p.2.7C_0_p.2.12A_1_p.3.1A_1_p.3.16A_0_p.2.1A_0_p.2.6O_0_p.2.15O_0_p.2.10C_1_p.3.7O_1_p.3.10O_0_p.2.31O_1_p.3.15O_1_p.3.26E_1_p.3.24N_1_p.3.14N_1_p.3.19O_1_p.3.20O_0_p.2.5O_1_p.3.5A_1_p.3.21N_0_p.2.4N_1_p.3.9N_0_p.2.23N_1_p.3.4N_1_p.3.25A_0_p.2.25E_0_p.2.3E_0_p.2.30E_0_p.2.13E_1_p.3.13O_0_p.2.33E_1_p.3.8N_0_p.2.18A_1_p.3.11A_1_p.3.6E_1_p.3.3E_1_p.3.18N_0_p.2.32O_0_p.2.24E_0_p.2.8E_0_p.2.22A_0_p.2.11O_0_p.2.19N_0_p.2.9N_0_p.2.14N_0_p.2.29A_0_p.2.20E_0_p.2.27C_0_p.2.17C_0_p.2.26
Análise paralela e EFA
  data %>% fa.parallel(fa = "fa" )

## Parallel analysis suggests that the number of factors =  6  and the number of components =  NA
  data %>%  fa(nfactors = 5) %>% print.psych(cut =.28, sort = TRUE)
## Factor Analysis using method =  minres
## Call: fa(r = ., nfactors = 5)
## Standardized loadings (pattern matrix) based upon correlation matrix
##            item   MR1   MR2   MR3   MR4   MR5    h2   u2 com
## C_0_p.2.12   16  0.69                         0.413 0.59 1.2
## C_0_p.2.17   12 -0.65                         0.434 0.57 1.2
## C_1_p.3.23   22  0.63                         0.507 0.49 1.3
## C_0_p.2.2    14  0.61                         0.503 0.50 1.4
## A_0_p.2.16    5  0.60                         0.418 0.58 1.2
## C_1_p.3.17   21  0.60                         0.456 0.54 1.1
## C_0_p.2.7    15  0.59                         0.398 0.60 1.2
## C_0_p.2.26   13 -0.53                         0.374 0.63 1.3
## C_1_p.3.2    18  0.53        0.30             0.540 0.46 2.0
## C_0_p.2.21   17  0.42                         0.222 0.78 1.3
## C_1_p.3.12   20  0.41                         0.351 0.65 1.9
## E_0_p.2.30   28  0.35                         0.273 0.73 3.2
## E_0_p.2.27   25 -0.30                         0.172 0.83 2.3
## A_0_p.2.20    2                               0.150 0.85 2.6
## E_0_p.2.3    26                               0.105 0.90 3.6
## N_0_p.2.14   35       -0.78                   0.598 0.40 1.1
## N_0_p.2.29   36       -0.57                   0.406 0.59 1.2
## N_1_p.3.9    42        0.54                   0.371 0.63 1.3
## N_1_p.3.4    41        0.50                   0.339 0.66 1.7
## N_0_p.2.32   37       -0.48                   0.223 0.78 1.2
## N_0_p.2.4    38        0.48                   0.319 0.68 1.3
## N_1_p.3.25   45        0.42              0.29 0.327 0.67 1.9
## N_1_p.3.19   44        0.36                   0.241 0.76 1.8
## N_0_p.2.23   40        0.35                   0.296 0.70 3.0
## A_1_p.3.1     7        0.34                   0.337 0.66 2.8
## A_1_p.3.21   11        0.31                   0.170 0.83 1.7
## N_0_p.2.9    34       -0.31                   0.195 0.80 1.7
## N_1_p.3.14   43                               0.217 0.78 2.4
## O_1_p.3.10   54              0.63             0.482 0.52 1.1
## O_0_p.2.31   51              0.54             0.350 0.65 1.2
## O_0_p.2.15   50              0.45             0.278 0.72 1.3
## O_1_p.3.20   56              0.41             0.363 0.64 2.2
## O_0_p.2.10   49              0.39             0.308 0.69 2.3
## O_1_p.3.5    53              0.38             0.225 0.77 1.8
## E_1_p.3.18   32       -0.30  0.38             0.180 0.82 1.9
## E_1_p.3.24   33              0.34             0.228 0.77 1.8
## O_0_p.2.5    48              0.32             0.216 0.78 2.0
## O_0_p.2.19   46             -0.31             0.197 0.80 2.0
## O_1_p.3.15   55                               0.201 0.80 3.4
## E_0_p.2.8    23                               0.159 0.84 2.9
## O_1_p.3.26   57                               0.276 0.72 4.2
## A_1_p.3.6     8                    0.72       0.495 0.51 1.1
## A_1_p.3.11    9                    0.51       0.320 0.68 1.5
## A_0_p.2.6     4        0.30        0.45       0.448 0.55 2.7
## A_0_p.2.1     3  0.29              0.44       0.375 0.62 2.0
## C_1_p.3.7    19                    0.39       0.333 0.67 2.1
## E_0_p.2.13   27                    0.33       0.197 0.80 2.6
## A_0_p.2.25    6                    0.33       0.187 0.81 2.3
## O_0_p.2.24   47                               0.104 0.90 1.8
## A_1_p.3.16   10                               0.245 0.75 3.8
## E_1_p.3.3    29                               0.080 0.92 1.9
## E_1_p.3.8    30                               0.105 0.89 3.7
## A_0_p.2.11    1                               0.082 0.92 2.2
## E_0_p.2.22   24                         -0.68 0.478 0.52 1.0
## E_1_p.3.13   31                          0.41 0.258 0.74 2.0
## O_0_p.2.33   52                          0.34 0.178 0.82 2.2
## N_0_p.2.18   39                          0.28 0.187 0.81 3.4
## 
##                        MR1  MR2  MR3  MR4  MR5
## SS loadings           5.23 3.92 3.12 2.87 1.76
## Proportion Var        0.09 0.07 0.05 0.05 0.03
## Cumulative Var        0.09 0.16 0.22 0.27 0.30
## Proportion Explained  0.31 0.23 0.18 0.17 0.10
## Cumulative Proportion 0.31 0.54 0.73 0.90 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR3  MR4  MR5
## MR1 1.00 0.28 0.25 0.27 0.09
## MR2 0.28 1.00 0.24 0.20 0.17
## MR3 0.25 0.24 1.00 0.19 0.22
## MR4 0.27 0.20 0.19 1.00 0.11
## MR5 0.09 0.17 0.22 0.11 1.00
## 
## Mean item complexity =  2
## Test of the hypothesis that 5 factors are sufficient.
## 
## The degrees of freedom for the null model are  1596  and the objective function was  26.52 with Chi Square of  3902.75
## The degrees of freedom for the model are 1321  and the objective function was  13.75 
## 
## The root mean square of the residuals (RMSR) is  0.06 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  166 with the empirical chi square  1743.97  with prob <  3.2e-14 
## The total number of observations was  168  with Likelihood Chi Square =  1977.3  with prob <  4.7e-29 
## 
## Tucker Lewis Index of factoring reliability =  0.643
## RMSEA index =  0.066  and the 90 % confidence intervals are  0.05 NA
## BIC =  -4791.45
## Fit based upon off diagonal values = 0.9
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3  MR4  MR5
## Correlation of (regression) scores with factors   0.94 0.93 0.90 0.90 0.85
## Multiple R square of scores with factors          0.89 0.87 0.81 0.81 0.72
## Minimum correlation of possible factor scores     0.78 0.73 0.61 0.62 0.44
Salva resultados em excel
# Roda análise e salva em um objeto
  efa5 <- fa(data, nfactors = 5)
 
# Abre função que dados dos objectos psych em excel
  source("http://www.labape.com.br/rprimi/R/save_loadings4.R")

# Precisa disso para rodar o java (procure no seu comp o arquivo libjvm.dylib e carregue-o explicitamente)
  dyn.load('/Applications/Mplus/jre/Contents/Home/lib/server/libjvm.dylib')
  
# usa a função para salvar as cargas com o dicionário
  save_loadings4(efa5, item_dic = dic_senna, filename = "efa5.xlsx", digits = 2)

Análise bifatorial exploratória por domínios

 dic_A <- dic_senna %>% filter(factor == "A_1" | factor == "A_0")
 
 data %>% select(dic_A$coditem) %>% fa.parallel()

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
 data %>% select(dic_A$coditem) %>% omega(nfactors = 3, key = dic_A$key)

## Omega 
## Call: omega(m = ., nfactors = 3, key = dic_A$key)
## Alpha:                 0.73 
## G.6:                   0.75 
## Omega Hierarchical:    0.52 
## Omega H asymptotic:    0.67 
## Omega Total            0.78 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##                 g   F1*   F2*   F3*   h2   u2   p2
## A_0_p.2.11-              0.23       0.09 0.91 0.30
## A_0_p.2.20-  0.35              0.33 0.26 0.74 0.49
## A_0_p.2.1    0.61              0.39 0.54 0.46 0.69
## A_0_p.2.6    0.50              0.23 0.35 0.65 0.71
## A_0_p.2.16   0.41  0.26        0.22 0.32 0.68 0.53
## A_0_p.2.25   0.29                   0.13 0.87 0.67
## A_1_p.3.1    0.47  0.66             0.65 0.35 0.33
## A_1_p.3.6    0.36        0.77       0.73 0.27 0.18
## A_1_p.3.11   0.25        0.50       0.31 0.69 0.21
## A_1_p.3.16   0.37  0.36             0.30 0.70 0.47
## A_1_p.3.21   0.34  0.20 -0.26  0.22 0.27 0.73 0.43
## 
## With eigenvalues of:
##    g  F1*  F2*  F3* 
## 1.69 0.76 1.06 0.43 
## 
## general/max  1.6   max/min =   2.49
## mean percent general =  0.46    with sd =  0.19 and cv of  0.41 
## Explained Common Variance of the general factor =  0.43 
## 
## The degrees of freedom are 25  and the fit is  0.12 
## The number of observations was  168  with Chi Square =  19.49  with prob <  0.77
## The root mean square of the residuals is  0.03 
## The df corrected root mean square of the residuals is  0.05
## RMSEA index =  0  and the 10 % confidence intervals are  0 0.043
## BIC =  -108.6
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 44  and the fit is  0.7 
## The number of observations was  168  with Chi Square =  113.39  with prob <  4.9e-08
## The root mean square of the residuals is  0.11 
## The df corrected root mean square of the residuals is  0.12 
## 
## RMSEA index =  0.1  and the 10 % confidence intervals are  0.075 0.119
## BIC =  -112.06 
## 
## Measures of factor score adequacy             
##                                                  g  F1*  F2*   F3*
## Correlation of scores with factors            0.75 0.72 0.83  0.50
## Multiple R square of scores with factors      0.57 0.52 0.69  0.25
## Minimum correlation of factor score estimates 0.14 0.03 0.38 -0.49
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*
## Omega total for total scores and subscales    0.78 0.63 0.50 0.61
## Omega general for total scores and subscales  0.52 0.34 0.22 0.43
## Omega group for total scores and subscales    0.14 0.29 0.27 0.18

Salva cargas fatoriais

# Roda análise e salva em um objeto
  omegaA <- data %>% select(dic_A$coditem) %>% omega(nfactors = 3, key = dic_A$key)
 
# usa a função para salvar as cargas com o dicionário
  save_loadings4(obj = omegaA, item_dic = dic_A, filename = "omegaA.xlsx", digits=2)

Exercício