Configurando ambiente e carregando dados e funções
    setwd("~/Dropbox (Personal)/TRI/2017_exercicios")
    load("senna_v2_tri_ex6.RData")

    # Função que automatiza a criação de keys do psych
    
    source("http://www.labape.com.br/rprimi/R/score_tests.R")
TCT usando a função score_tests
    library(psych)
    library(xlsx)

    psicom <- score_tests( data = df, min = 1, max = 5, 
                              item_dic = item_dic2,
                              filename = "item.xlsx",
                              save_item_stat = TRUE)
Investigando o objeto retornado pela função
    library(psych)
    print.psych(psicom, short = FALSE)
## Call: scoreItems(keys = keys, items = data[, rownames(keys)], missing = TRUE, 
##     impute = "none", digits = 3)
## 
## (Standardized) Alpha:
##          A    C    E    N    O
## alpha 0.86 0.94 0.81 0.88 0.89
## 
## Standard errors of unstandardized Alpha:
##            A      C      E      N      O
## ASE   0.0071 0.0033 0.0097 0.0068 0.0062
## 
## Standardized Alpha of observed scales:
##         A    C    E    N    O
## [1,] 0.86 0.94 0.81 0.88 0.89
## 
## Average item correlation:
##              A    C    E    N    O
## average.r 0.15 0.27 0.14 0.21 0.23
## 
##  Guttman 6* reliability: 
##             A    C    E    N    O
## Lambda.6 0.91 0.96 0.88 0.92 0.93
## 
## Signal/Noise based upon av.r : 
##                A  C   E   N   O
## Signal/Noise 6.1 17 4.2 7.1 8.2
## 
## Scale intercorrelations corrected for attenuation 
##  raw correlations below the diagonal, alpha on the diagonal 
##  corrected correlations above the diagonal:
## 
## Note that these are the correlations of the complete scales based on the correlation matrix,
##  not the observed scales based on the raw items.
##      A    C    E    N    O
## A 0.86 0.75 0.57 0.69 0.68
## C 0.68 0.94 0.58 0.69 0.74
## E 0.48 0.51 0.81 0.58 0.60
## N 0.60 0.63 0.49 0.88 0.62
## O 0.60 0.68 0.51 0.54 0.89
## 
## Item by scale correlations:
##  corrected for item overlap and scale reliability
##             A     C     E     N     O
## Sv1.004  0.42  0.30  0.42  0.33  0.33
## sv2.132  0.45  0.30  0.33  0.18  0.33
## sv2.133  0.47  0.29  0.32  0.18  0.27
## sv2.098 -0.34 -0.20 -0.21 -0.18 -0.22
## sv2.137 -0.23 -0.22 -0.23 -0.17 -0.15
## sv2.179 -0.18 -0.14 -0.17 -0.15 -0.16
## sv2.542  0.29  0.13  0.10  0.13  0.16
## sv2.543  0.20  0.04 -0.01  0.06  0.10
## sv2.545  0.38  0.26  0.00  0.19  0.23
## sv2.097 -0.17 -0.01  0.04  0.00  0.00
## sv2.159 -0.18 -0.10  0.22 -0.06  0.05
## sv2.160 -0.28 -0.19 -0.12 -0.13 -0.12
## sv2.166  0.60  0.48  0.39  0.34  0.41
## sv2.170  0.49  0.51  0.23  0.32  0.39
## sv2.642  0.54  0.55  0.34  0.41  0.45
## sv2.151 -0.29 -0.34  0.05 -0.27 -0.19
## sv2.162 -0.38 -0.36 -0.04 -0.31 -0.22
## sv2.178 -0.30 -0.31 -0.05 -0.28 -0.17
## Sv1.034  0.54  0.24  0.33  0.30  0.28
## sv2.191  0.35  0.12  0.20  0.17  0.15
## sv2.533  0.59  0.47  0.44  0.42  0.43
## sv2.534 -0.30 -0.15 -0.19 -0.24 -0.07
## sv2.536 -0.01 -0.01  0.03 -0.05  0.05
## sv2.538 -0.01  0.01  0.05 -0.11  0.09
## sv2.209  0.49  0.69  0.38  0.41  0.50
## sv2.274  0.50  0.69  0.37  0.48  0.51
## sv2.279  0.36  0.55  0.30  0.32  0.40
## sv2.572 -0.24 -0.35 -0.19 -0.20 -0.26
## sv2.644 -0.27 -0.35 -0.23 -0.25 -0.30
## sv2.645 -0.04 -0.09 -0.02  0.00 -0.05
## sv2.222  0.53  0.67  0.44  0.53  0.53
## sv2.223  0.26  0.36  0.22  0.28  0.32
## sv2.648  0.52  0.58  0.31  0.37  0.44
## Sv1.036 -0.12 -0.35 -0.05 -0.25 -0.19
## sv2.221 -0.18 -0.36 -0.15 -0.25 -0.27
## sv2.262 -0.26 -0.41  0.00 -0.28 -0.25
## Sv1.006  0.50  0.70  0.36  0.47  0.51
## sv2.233  0.47  0.67  0.30  0.46  0.47
## sv2.236  0.46  0.62  0.34  0.43  0.43
## Sv1.051 -0.15 -0.38 -0.08 -0.24 -0.18
## sv2.228 -0.14 -0.38 -0.07 -0.21 -0.19
## sv2.229 -0.13 -0.37 -0.08 -0.21 -0.15
## sv2.235  0.48  0.64  0.33  0.40  0.42
## sv2.290  0.38  0.49  0.34  0.34  0.43
## sv2.574  0.41  0.50  0.44  0.44  0.46
## sv2.205 -0.27 -0.38 -0.16 -0.17 -0.28
## sv2.257 -0.19 -0.43 -0.11 -0.15 -0.20
## sv2.261 -0.28 -0.48 -0.14 -0.24 -0.28
## sv2.244  0.53  0.68  0.40  0.41  0.50
## sv2.258  0.42  0.42  0.36  0.30  0.32
## sv2.585  0.47  0.55  0.42  0.36  0.43
## sv2.249 -0.19 -0.34 -0.19 -0.23 -0.20
## sv2.251 -0.22 -0.42 -0.23 -0.21 -0.22
## sv2.256 -0.21 -0.38 -0.18 -0.23 -0.21
## Sv1.055  0.31  0.29  0.58  0.35  0.30
## Sv1.063  0.42  0.43  0.60  0.49  0.42
## sv2.620  0.38  0.31  0.45  0.39  0.31
## sv2.291  0.03 -0.02 -0.08  0.00 -0.04
## sv2.301 -0.08 -0.18 -0.15 -0.09 -0.10
## sv2.652  0.30  0.40 -0.08  0.27  0.30
## sv2.331  0.10  0.08  0.24  0.07  0.10
## sv2.654  0.35  0.39  0.52  0.26  0.47
## sv2.656  0.27  0.37  0.43  0.24  0.41
## sv2.311  0.17  0.02 -0.09  0.02  0.05
## sv2.343 -0.10 -0.21 -0.40 -0.22 -0.19
## sv2.346  0.00 -0.03 -0.36 -0.09 -0.07
## Sv1.071  0.12 -0.04  0.35 -0.02  0.03
## Sv1.075  0.39  0.24  0.47  0.21  0.25
## sv2.353  0.34  0.27  0.48  0.28  0.31
## Sv1.067  0.30  0.25 -0.13  0.19  0.20
## sv2.342  0.03  0.02 -0.25 -0.01  0.01
## sv2.362  0.00  0.02 -0.15 -0.04  0.07
## Sv1.037  0.39  0.39  0.20  0.61  0.38
## sv2.440  0.29  0.24  0.18  0.36  0.29
## sv2.658  0.32  0.25  0.18  0.45  0.26
## Sv1.032 -0.29 -0.29 -0.07 -0.53 -0.23
## sv2.437 -0.10 -0.16 -0.06 -0.33 -0.06
## sv2.438 -0.30 -0.28 -0.02 -0.49 -0.19
## sv2.551  0.37  0.34  0.36  0.44  0.35
## sv2.552  0.35  0.28  0.27  0.44  0.32
## sv2.722  0.46  0.50  0.46  0.53  0.39
## sv2.367 -0.04 -0.17 -0.09 -0.36 -0.06
## sv2.369  0.02 -0.13 -0.04 -0.32 -0.06
## sv2.376  0.15  0.00 -0.14 -0.10  0.00
## sv2.557  0.31  0.23  0.25  0.32  0.24
## sv2.560  0.48  0.48  0.52  0.52  0.42
## sv2.561  0.39  0.36  0.40  0.46  0.34
## sv2.396 -0.16 -0.29 -0.24 -0.37 -0.16
## sv2.402 -0.04 -0.06 -0.05 -0.15  0.04
## sv2.413 -0.14 -0.22 -0.22 -0.39 -0.12
## Sv1.040  0.25  0.33  0.23  0.22  0.55
## sv2.477  0.36  0.39  0.27  0.32  0.61
## sv2.590  0.47  0.41  0.38  0.37  0.52
## sv2.593 -0.17 -0.21 -0.12 -0.19 -0.23
## sv2.662 -0.23 -0.24 -0.13 -0.15 -0.35
## sv2.663 -0.19 -0.26 -0.09 -0.20 -0.33
## Sv1.005  0.34  0.48  0.39  0.40  0.60
## sv2.493  0.28  0.26  0.29  0.24  0.51
## sv2.607  0.38  0.41  0.36  0.36  0.68
## sv2.488 -0.09 -0.08 -0.13 -0.07 -0.19
## sv2.608 -0.04 -0.14 -0.08 -0.08 -0.14
## sv2.610 -0.21 -0.25 -0.17 -0.17 -0.32
## Sv1.066  0.44  0.39  0.38  0.35  0.54
## sv2.507  0.50  0.52  0.39  0.42  0.60
## sv2.508  0.28  0.27  0.29  0.20  0.46
## sv2.613 -0.09 -0.10 -0.07 -0.06 -0.19
## sv2.667 -0.13 -0.11 -0.10 -0.06 -0.15
## sv2.668 -0.22 -0.23 -0.16 -0.19 -0.29
## sv2.116  0.55  0.44  0.45  0.32  0.49
## sv2.148  0.53  0.39  0.45  0.28  0.42
## sv2.149  0.43  0.34  0.39  0.21  0.38
## sv2.672  0.44  0.41  0.36  0.36  0.40
## sv2.674  0.40  0.28  0.06  0.31  0.26
## sv2.676  0.49  0.39  0.31  0.39  0.38
## sv2.174  0.56  0.44  0.22  0.48  0.38
## sv2.177  0.58  0.48  0.27  0.48  0.44
## sv2.678  0.61  0.52  0.37  0.45  0.46
## sv2.202  0.58  0.33  0.36  0.38  0.34
## sv2.203  0.55  0.31  0.35  0.34  0.29
## sv2.680  0.44  0.22  0.30  0.34  0.25
## sv2.683  0.53  0.69  0.40  0.45  0.51
## sv2.684  0.52  0.59  0.54  0.54  0.51
## sv2.685  0.52  0.62  0.49  0.46  0.54
## sv2.283  0.50  0.66  0.40  0.51  0.52
## sv2.284  0.49  0.56  0.33  0.51  0.48
## sv2.286  0.49  0.71  0.41  0.48  0.50
## sv2.238  0.45  0.67  0.33  0.42  0.45
## sv2.240  0.49  0.65  0.40  0.50  0.50
## sv2.686  0.46  0.65  0.32  0.42  0.44
## Sv1.077  0.48  0.68  0.32  0.36  0.45
## Sv1.091  0.47  0.61  0.35  0.43  0.51
## sv2.219  0.44  0.64  0.36  0.37  0.45
## sv2.195  0.48  0.48  0.26  0.41  0.39
## sv2.687  0.52  0.65  0.45  0.43  0.46
## sv2.688  0.54  0.65  0.47  0.44  0.49
## sv2.298  0.45  0.48  0.49  0.46  0.46
## sv2.299  0.47  0.40  0.43  0.35  0.33
## sv2.410  0.44  0.41  0.52  0.55  0.39
## sv2.318  0.38  0.43  0.53  0.36  0.41
## sv2.332  0.42  0.51  0.55  0.39  0.46
## sv2.364  0.41  0.52  0.58  0.43  0.50
## sv2.117  0.55  0.51  0.56  0.46  0.43
## sv2.323  0.25  0.24  0.44  0.23  0.28
## sv2.324  0.23  0.22  0.43  0.22  0.26
## Sv1.079  0.37  0.33  0.25  0.53  0.32
## sv2.126  0.45  0.37  0.25  0.65  0.38
## sv2.447  0.46  0.39  0.24  0.61  0.36
## sv2.381  0.44  0.45  0.36  0.69  0.44
## sv2.690  0.49  0.47  0.34  0.67  0.47
## sv2.692  0.39  0.38  0.33  0.57  0.35
## sv2.411  0.49  0.52  0.46  0.55  0.50
## sv2.417  0.46  0.43  0.39  0.62  0.43
## sv2.429  0.48  0.49  0.56  0.59  0.44
## sv2.482  0.28  0.36  0.22  0.35  0.58
## sv2.695  0.44  0.45  0.31  0.39  0.64
## sv2.696  0.44  0.47  0.33  0.35  0.64
## sv2.701  0.38  0.45  0.32  0.34  0.64
## sv2.702  0.47  0.56  0.48  0.54  0.69
## sv2.703  0.43  0.51  0.39  0.42  0.72
## sv2.706  0.51  0.59  0.52  0.49  0.62
## sv2.707  0.47  0.54  0.47  0.46  0.63
## sv2.708  0.46  0.50  0.37  0.43  0.70
## 
## Non missing response frequency for each item
##            1    2    3    4    5 miss
## Sv1.004 0.05 0.16 0.25 0.33 0.22    0
## sv2.132 0.08 0.21 0.25 0.28 0.17    0
## sv2.133 0.05 0.16 0.27 0.34 0.18    0
## sv2.098 0.52 0.22 0.17 0.06 0.03    0
## sv2.137 0.36 0.34 0.23 0.05 0.02    0
## sv2.179 0.46 0.22 0.16 0.12 0.05    0
## sv2.542 0.38 0.19 0.13 0.15 0.15    0
## sv2.543 0.33 0.21 0.20 0.16 0.11    0
## sv2.545 0.18 0.32 0.25 0.15 0.11    0
## sv2.097 0.32 0.26 0.25 0.11 0.06    0
## sv2.159 0.49 0.28 0.13 0.05 0.04    0
## sv2.160 0.74 0.16 0.07 0.02 0.01    0
## sv2.166 0.06 0.16 0.19 0.24 0.36    0
## sv2.170 0.05 0.10 0.12 0.26 0.47    0
## sv2.642 0.05 0.15 0.22 0.27 0.31    0
## sv2.151 0.43 0.28 0.17 0.07 0.04    0
## sv2.162 0.45 0.31 0.14 0.06 0.04    0
## sv2.178 0.65 0.19 0.11 0.03 0.02    0
## Sv1.034 0.14 0.29 0.34 0.15 0.07    0
## sv2.191 0.30 0.35 0.25 0.07 0.03    0
## sv2.533 0.07 0.19 0.27 0.28 0.18    0
## sv2.534 0.30 0.35 0.23 0.06 0.05    0
## sv2.536 0.14 0.32 0.30 0.14 0.10    0
## sv2.538 0.13 0.31 0.34 0.16 0.07    0
## sv2.209 0.07 0.18 0.27 0.27 0.21    0
## sv2.274 0.07 0.23 0.30 0.23 0.18    0
## sv2.279 0.03 0.12 0.25 0.39 0.21    0
## sv2.572 0.33 0.30 0.26 0.07 0.04    0
## sv2.644 0.37 0.30 0.20 0.09 0.04    0
## sv2.645 0.24 0.21 0.23 0.18 0.15    0
## sv2.222 0.05 0.19 0.30 0.28 0.19    0
## sv2.223 0.17 0.37 0.28 0.11 0.06    0
## sv2.648 0.09 0.17 0.24 0.31 0.19    0
## Sv1.036 0.24 0.38 0.25 0.09 0.04    0
## sv2.221 0.32 0.36 0.21 0.07 0.03    0
## sv2.262 0.17 0.36 0.25 0.14 0.08    0
## Sv1.006 0.08 0.21 0.31 0.24 0.16    0
## sv2.233 0.07 0.23 0.31 0.22 0.17    0
## sv2.236 0.05 0.16 0.23 0.27 0.29    0
## Sv1.051 0.31 0.38 0.22 0.07 0.03    0
## sv2.228 0.47 0.28 0.17 0.05 0.03    0
## sv2.229 0.36 0.36 0.18 0.06 0.04    0
## sv2.235 0.10 0.22 0.27 0.24 0.18    0
## sv2.290 0.09 0.21 0.26 0.26 0.18    0
## sv2.574 0.06 0.20 0.26 0.23 0.24    0
## sv2.205 0.53 0.26 0.14 0.05 0.02    0
## sv2.257 0.51 0.30 0.12 0.05 0.03    0
## sv2.261 0.45 0.31 0.18 0.04 0.02    0
## sv2.244 0.06 0.18 0.23 0.31 0.22    0
## sv2.258 0.09 0.18 0.21 0.26 0.26    0
## sv2.585 0.03 0.12 0.23 0.34 0.29    0
## sv2.249 0.35 0.38 0.20 0.05 0.02    0
## sv2.251 0.40 0.33 0.20 0.03 0.03    0
## sv2.256 0.37 0.36 0.21 0.04 0.02    0
## Sv1.055 0.04 0.11 0.18 0.28 0.40    0
## Sv1.063 0.08 0.17 0.22 0.22 0.30    0
## sv2.620 0.12 0.24 0.32 0.18 0.14    0
## sv2.291 0.25 0.28 0.26 0.12 0.09    0
## sv2.301 0.21 0.38 0.28 0.10 0.04    0
## sv2.652 0.16 0.27 0.29 0.15 0.13    0
## sv2.331 0.20 0.33 0.24 0.11 0.12    0
## sv2.654 0.14 0.26 0.28 0.19 0.13    0
## sv2.656 0.32 0.27 0.23 0.10 0.08    0
## sv2.311 0.29 0.35 0.24 0.07 0.05    0
## sv2.343 0.25 0.32 0.18 0.15 0.10    0
## sv2.346 0.27 0.30 0.24 0.12 0.07    0
## Sv1.071 0.05 0.19 0.22 0.26 0.28    0
## Sv1.075 0.04 0.13 0.21 0.30 0.32    0
## sv2.353 0.07 0.19 0.27 0.30 0.18    0
## Sv1.067 0.12 0.25 0.29 0.18 0.15    0
## sv2.342 0.36 0.25 0.22 0.09 0.07    0
## sv2.362 0.39 0.23 0.20 0.08 0.09    0
## Sv1.037 0.12 0.27 0.30 0.18 0.13    0
## sv2.440 0.21 0.30 0.24 0.15 0.10    0
## sv2.658 0.23 0.30 0.24 0.11 0.11    0
## Sv1.032 0.25 0.30 0.22 0.13 0.10    0
## sv2.437 0.32 0.30 0.24 0.08 0.06    0
## sv2.438 0.26 0.32 0.19 0.13 0.10    0
## sv2.551 0.12 0.31 0.32 0.17 0.08    0
## sv2.552 0.19 0.32 0.25 0.13 0.11    0
## sv2.722 0.07 0.24 0.34 0.22 0.14    0
## sv2.367 0.47 0.27 0.17 0.04 0.05    0
## sv2.369 0.21 0.36 0.25 0.11 0.07    0
## sv2.376 0.17 0.30 0.20 0.18 0.16    0
## sv2.557 0.19 0.31 0.23 0.15 0.12    0
## sv2.560 0.10 0.20 0.28 0.24 0.19    0
## sv2.561 0.17 0.25 0.24 0.20 0.14    0
## sv2.396 0.36 0.35 0.18 0.06 0.05    0
## sv2.402 0.27 0.35 0.23 0.10 0.05    0
## sv2.413 0.31 0.27 0.19 0.11 0.10    0
## Sv1.040 0.11 0.27 0.21 0.25 0.16    0
## sv2.477 0.14 0.25 0.25 0.19 0.16    0
## sv2.590 0.12 0.25 0.33 0.19 0.11    0
## sv2.593 0.42 0.31 0.20 0.04 0.02    0
## sv2.662 0.67 0.20 0.09 0.03 0.01    0
## sv2.663 0.50 0.26 0.14 0.05 0.04    0
## Sv1.005 0.12 0.26 0.33 0.20 0.09    0
## sv2.493 0.08 0.18 0.24 0.26 0.24    0
## sv2.607 0.13 0.25 0.25 0.19 0.18    0
## sv2.488 0.41 0.28 0.19 0.08 0.04    0
## sv2.608 0.30 0.35 0.24 0.08 0.04    0
## sv2.610 0.54 0.25 0.14 0.04 0.03    0
## Sv1.066 0.08 0.21 0.29 0.23 0.18    0
## sv2.507 0.06 0.19 0.25 0.28 0.21    0
## sv2.508 0.09 0.22 0.25 0.25 0.19    0
## sv2.613 0.39 0.30 0.18 0.06 0.05    0
## sv2.667 0.49 0.21 0.12 0.09 0.08    0
## sv2.668 0.47 0.26 0.17 0.06 0.04    0
## sv2.116 0.05 0.18 0.28 0.30 0.19    0
## sv2.148 0.05 0.19 0.25 0.30 0.22    0
## sv2.149 0.06 0.20 0.27 0.31 0.17    0
## sv2.672 0.07 0.22 0.37 0.21 0.13    0
## sv2.674 0.17 0.28 0.23 0.17 0.15    0
## sv2.676 0.07 0.22 0.36 0.21 0.13    0
## sv2.174 0.09 0.21 0.27 0.25 0.18    0
## sv2.177 0.12 0.23 0.29 0.21 0.15    0
## sv2.678 0.03 0.15 0.29 0.31 0.22    0
## sv2.202 0.09 0.29 0.39 0.17 0.06    0
## sv2.203 0.09 0.27 0.41 0.15 0.07    0
## sv2.680 0.14 0.31 0.37 0.11 0.06    0
## sv2.683 0.05 0.17 0.31 0.28 0.19    0
## sv2.684 0.04 0.17 0.25 0.33 0.22    0
## sv2.685 0.07 0.17 0.28 0.27 0.21    0
## sv2.283 0.07 0.26 0.34 0.21 0.12    0
## sv2.284 0.10 0.27 0.32 0.20 0.10    0
## sv2.286 0.04 0.19 0.33 0.27 0.16    0
## sv2.238 0.06 0.16 0.28 0.27 0.24    0
## sv2.240 0.05 0.20 0.36 0.24 0.14    0
## sv2.686 0.04 0.16 0.33 0.28 0.20    0
## Sv1.077 0.05 0.14 0.27 0.26 0.28    0
## Sv1.091 0.08 0.21 0.32 0.25 0.15    0
## sv2.219 0.04 0.13 0.32 0.27 0.23    0
## sv2.195 0.10 0.25 0.28 0.24 0.12    0
## sv2.687 0.03 0.13 0.27 0.30 0.28    0
## sv2.688 0.03 0.15 0.30 0.30 0.22    0
## sv2.298 0.08 0.18 0.26 0.27 0.21    0
## sv2.299 0.05 0.10 0.15 0.27 0.43    0
## sv2.410 0.05 0.21 0.29 0.26 0.19    0
## sv2.318 0.11 0.23 0.28 0.22 0.16    0
## sv2.332 0.06 0.22 0.32 0.23 0.18    0
## sv2.364 0.12 0.27 0.30 0.18 0.13    0
## sv2.117 0.02 0.13 0.23 0.32 0.29    0
## sv2.323 0.12 0.23 0.29 0.20 0.15    0
## sv2.324 0.13 0.21 0.28 0.19 0.20    0
## Sv1.079 0.10 0.30 0.32 0.17 0.11    0
## sv2.126 0.14 0.26 0.33 0.16 0.11    0
## sv2.447 0.14 0.28 0.31 0.17 0.10    0
## sv2.381 0.12 0.30 0.32 0.16 0.10    0
## sv2.690 0.11 0.27 0.36 0.16 0.09    0
## sv2.692 0.13 0.32 0.35 0.13 0.07    0
## sv2.411 0.05 0.19 0.32 0.26 0.17    0
## sv2.417 0.11 0.27 0.34 0.18 0.10    0
## sv2.429 0.04 0.16 0.29 0.29 0.21    0
## sv2.482 0.27 0.28 0.26 0.11 0.08    0
## sv2.695 0.17 0.28 0.25 0.17 0.13    0
## sv2.696 0.15 0.28 0.26 0.18 0.14    0
## sv2.701 0.16 0.27 0.29 0.16 0.13    0
## sv2.702 0.06 0.22 0.31 0.26 0.14    0
## sv2.703 0.12 0.24 0.28 0.20 0.15    0
## sv2.706 0.03 0.14 0.25 0.32 0.26    0
## sv2.707 0.05 0.19 0.33 0.25 0.19    0
## sv2.708 0.09 0.21 0.26 0.25 0.19    0
    describe(psicom$scores)
##   vars    n mean   sd median trimmed  mad  min  max range  skew kurtosis
## A    1 1135 3.39 0.47   3.36    3.38 0.49 2.06 4.83  2.78  0.12    -0.24
## C    2 1135 3.52 0.61   3.49    3.51 0.66 1.58 5.00  3.42  0.15    -0.55
## E    3 1135 3.34 0.49   3.33    3.34 0.49 1.41 4.78  3.37 -0.08     0.12
## N    4 1135 3.14 0.58   3.07    3.12 0.55 1.59 4.93  3.33  0.30    -0.12
## O    5 1135 3.41 0.60   3.33    3.39 0.60 1.74 4.96  3.22  0.31    -0.44
##     se
## A 0.01
## C 0.02
## E 0.01
## N 0.02
## O 0.02
Modelo de Samejima resposta graduada via mirt
  • Nesse exercĂ­cio note o uso do dplyr
  • Note tambĂ©m as discriminações dos itens! Porque ha itens com discriminação negativa?
# Seleciona variáveis de um fator 
  library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
  items <- item_dic2 %>% filter(factor == "C") %>% select(coditem)

  
  library(mirt)
## Loading required package: stats4
## Loading required package: lattice
  mod_graded <- 
    df %>% select(items$coditem) %>%
    mirt(1, TOL = .001)
## 
Iteration: 1, Log-Lik: -71225.895, Max-Change: 2.03329
Iteration: 2, Log-Lik: -65545.590, Max-Change: 1.81945
Iteration: 3, Log-Lik: -65103.250, Max-Change: 1.15219
Iteration: 4, Log-Lik: -65013.049, Max-Change: 0.41521
Iteration: 5, Log-Lik: -64991.783, Max-Change: 0.12837
Iteration: 6, Log-Lik: -64987.941, Max-Change: 0.04723
Iteration: 7, Log-Lik: -64987.476, Max-Change: 0.01490
Iteration: 8, Log-Lik: -64986.226, Max-Change: 0.01639
Iteration: 9, Log-Lik: -64985.263, Max-Change: 0.01356
Iteration: 10, Log-Lik: -64984.366, Max-Change: 0.01175
Iteration: 11, Log-Lik: -64983.731, Max-Change: 0.01022
Iteration: 12, Log-Lik: -64983.209, Max-Change: 0.00879
Iteration: 13, Log-Lik: -64981.840, Max-Change: 0.00985
Iteration: 14, Log-Lik: -64981.614, Max-Change: 0.00567
Iteration: 15, Log-Lik: -64981.442, Max-Change: 0.00526
Iteration: 16, Log-Lik: -64981.018, Max-Change: 0.00445
Iteration: 17, Log-Lik: -64980.928, Max-Change: 0.00309
Iteration: 18, Log-Lik: -64980.878, Max-Change: 0.00345
Iteration: 19, Log-Lik: -64980.755, Max-Change: 0.00220
Iteration: 20, Log-Lik: -64980.724, Max-Change: 0.00241
Iteration: 21, Log-Lik: -64980.697, Max-Change: 0.00189
Iteration: 22, Log-Lik: -64980.637, Max-Change: 0.00154
Iteration: 23, Log-Lik: -64980.624, Max-Change: 0.00096
  coef(mod_graded, simplify=TRUE, IRTpars = TRUE)
## $items
##              a     b1     b2     b3      b4
## sv2.209  2.134 -1.843 -0.872  0.031   1.022
## sv2.274  2.013 -1.921 -0.717  0.268   1.208
## sv2.279  1.363 -3.028 -1.622 -0.365   1.329
## sv2.572 -0.733  1.001 -0.935 -3.131  -4.618
## sv2.644 -0.735  0.758 -1.151 -2.824  -4.640
## sv2.645 -0.084 13.429  2.285 -8.886 -21.117
## sv2.222  1.980 -2.188 -0.938  0.089   1.176
## sv2.223  0.770 -2.237  0.219  2.193   3.936
## sv2.648  1.431 -2.089 -0.979 -0.012   1.365
## Sv1.036 -0.652  1.914 -0.837 -3.061  -5.033
## sv2.221 -0.664  1.190 -1.263 -3.396  -5.346
## sv2.262 -0.750  2.335 -0.165 -1.858  -3.508
## Sv1.006  2.063 -1.805 -0.760  0.257   1.267
## sv2.233  1.872 -1.981 -0.741  0.316   1.275
## sv2.236  1.650 -2.410 -1.192 -0.252   0.760
## Sv1.051 -0.715  1.245 -1.210 -3.319  -5.138
## sv2.228 -0.718  0.162 -1.664 -3.638  -5.019
## sv2.229 -0.669  0.891 -1.583 -3.601  -5.082
## sv2.235  1.633 -1.825 -0.679  0.285   1.346
## sv2.290  1.183 -2.326 -0.918  0.244   1.615
## sv2.574  1.208 -2.728 -1.095  0.089   1.184
## sv2.205 -0.887 -0.182 -1.730 -3.203  -4.484
## sv2.257 -0.903 -0.070 -1.810 -3.096  -4.300
## sv2.261 -1.048  0.186 -1.325 -2.913  -3.893
## sv2.244  2.111 -2.007 -0.945 -0.167   0.951
## sv2.258  0.934 -2.819 -1.248 -0.095   1.300
## sv2.585  1.303 -3.146 -1.683 -0.515   0.907
## sv2.249 -0.694  0.946 -1.637 -4.001  -5.847
## sv2.251 -0.877  0.474 -1.379 -3.446  -4.481
## sv2.256 -0.697  0.851 -1.552 -4.189  -5.650
## sv2.683  2.136 -2.035 -0.990  0.032   1.096
## sv2.684  1.539 -2.677 -1.211 -0.183   1.150
## sv2.685  1.675 -2.146 -1.020  0.020   1.115
## sv2.283  1.890 -1.966 -0.635  0.530   1.630
## sv2.284  1.380 -2.031 -0.573  0.736   2.053
## sv2.286  2.297 -2.115 -0.929  0.151   1.218
## sv2.238  1.934 -2.070 -1.011 -0.029   0.938
## sv2.240  1.868 -2.226 -0.915  0.356   1.464
## sv2.686  1.845 -2.434 -1.134  0.048   1.128
## Sv1.077  2.120 -2.092 -1.113 -0.160   0.725
## Sv1.091  1.568 -2.065 -0.851  0.347   1.554
## sv2.219  1.824 -2.357 -1.266 -0.050   0.973
## sv2.195  1.132 -2.329 -0.702  0.566   2.128
## sv2.687  1.866 -2.584 -1.360 -0.266   0.763
## sv2.688  1.900 -2.562 -1.221 -0.075   1.024
## 
## $means
## F1 
##  0 
## 
## $cov
##    F1
## F1  1
  itemplot(mod_graded, 4, type = 'trace')

  itemplot(mod_graded, 1, type = 'trace')

  itemplot(mod_graded, 6, type = 'trace')

  plot(mod_graded, type = "trace", which.items = c(1:8))

  plot(mod_graded, type = "info")

Modelo “rating scale” de Andrich
  • Qual o problema de rodar as análises sem inverter os itens ?
  • Note a versatilidade da linguagem vetorial do R !
# Invertendo itens negativos
  itens_negativos <- item_dic2 %>% filter(pole ==0) %>% select(coditem)
  df2 <- df
  df2[ , itens_negativos$coditem] <- 6-df2[ , itens_negativos$coditem]
  
  
  mod_rsmIRT <- 
    df2 %>% select(items$coditem) %>%
    mirt(1, itemtype = 'rsm', TOL = .001)
## 
Iteration: 1, Log-Lik: -75472.432, Max-Change: 1.19263
Iteration: 2, Log-Lik: -68011.511, Max-Change: 0.35536
Iteration: 3, Log-Lik: -67798.718, Max-Change: 0.13651
Iteration: 4, Log-Lik: -67772.432, Max-Change: 0.05519
Iteration: 5, Log-Lik: -67749.446, Max-Change: 0.04334
Iteration: 6, Log-Lik: -67735.632, Max-Change: 0.03149
Iteration: 7, Log-Lik: -67722.831, Max-Change: 0.02526
Iteration: 8, Log-Lik: -67710.196, Max-Change: 0.02369
Iteration: 9, Log-Lik: -67697.690, Max-Change: 0.02244
Iteration: 10, Log-Lik: -67685.276, Max-Change: 0.02160
Iteration: 11, Log-Lik: -67672.963, Max-Change: 0.02221
Iteration: 12, Log-Lik: -67660.699, Max-Change: 0.02065
Iteration: 13, Log-Lik: -67648.587, Max-Change: 0.01968
Iteration: 14, Log-Lik: -67636.634, Max-Change: 0.01897
Iteration: 15, Log-Lik: -67624.876, Max-Change: 0.01830
Iteration: 16, Log-Lik: -67613.308, Max-Change: 0.02110
Iteration: 17, Log-Lik: -67601.916, Max-Change: 0.01745
Iteration: 18, Log-Lik: -67590.771, Max-Change: 0.01637
Iteration: 19, Log-Lik: -67579.876, Max-Change: 0.01565
Iteration: 20, Log-Lik: -67569.248, Max-Change: 0.01926
Iteration: 21, Log-Lik: -67558.894, Max-Change: 0.01438
Iteration: 22, Log-Lik: -67548.833, Max-Change: 0.01419
Iteration: 23, Log-Lik: -67539.095, Max-Change: 0.01399
Iteration: 24, Log-Lik: -67529.693, Max-Change: 0.01377
Iteration: 25, Log-Lik: -67520.638, Max-Change: 0.01888
Iteration: 26, Log-Lik: -67511.924, Max-Change: 0.01309
Iteration: 27, Log-Lik: -67503.581, Max-Change: 0.01284
Iteration: 28, Log-Lik: -67495.610, Max-Change: 0.01256
Iteration: 29, Log-Lik: -67488.014, Max-Change: 0.01228
Iteration: 30, Log-Lik: -67480.795, Max-Change: 0.01698
Iteration: 31, Log-Lik: -67473.923, Max-Change: 0.01151
Iteration: 32, Log-Lik: -67467.446, Max-Change: 0.01120
Iteration: 33, Log-Lik: -67461.338, Max-Change: 0.01089
Iteration: 34, Log-Lik: -67455.592, Max-Change: 0.01057
Iteration: 35, Log-Lik: -67450.199, Max-Change: 0.01453
Iteration: 36, Log-Lik: -67445.129, Max-Change: 0.00996
Iteration: 37, Log-Lik: -67440.405, Max-Change: 0.00949
Iteration: 38, Log-Lik: -67436.003, Max-Change: 0.00901
Iteration: 39, Log-Lik: -67431.911, Max-Change: 0.00880
Iteration: 40, Log-Lik: -67411.778, Max-Change: 0.01806
Iteration: 41, Log-Lik: -67409.221, Max-Change: 0.00730
Iteration: 42, Log-Lik: -67407.157, Max-Change: 0.00649
Iteration: 43, Log-Lik: -67397.274, Max-Change: 0.00991
Iteration: 44, Log-Lik: -67396.129, Max-Change: 0.00446
Iteration: 45, Log-Lik: -67395.196, Max-Change: 0.00410
Iteration: 46, Log-Lik: -67390.723, Max-Change: 0.00371
Iteration: 47, Log-Lik: -67390.264, Max-Change: 0.00294
Iteration: 48, Log-Lik: -67389.861, Max-Change: 0.00556
Iteration: 49, Log-Lik: -67389.179, Max-Change: 0.00245
Iteration: 50, Log-Lik: -67388.874, Max-Change: 0.00224
Iteration: 51, Log-Lik: -67388.596, Max-Change: 0.00225
Iteration: 52, Log-Lik: -67387.270, Max-Change: 0.00258
Iteration: 53, Log-Lik: -67387.139, Max-Change: 0.00158
Iteration: 54, Log-Lik: -67387.022, Max-Change: 0.00142
Iteration: 55, Log-Lik: -67386.463, Max-Change: 0.00108
Iteration: 56, Log-Lik: -67386.409, Max-Change: 0.00100
  coef(mod_rsmIRT , simplify=TRUE, irt.parms = TRUE)
## $items
##         a1     b1     b2    b3    b4      c
## sv2.209  1 -1.499 -0.737 0.033 0.711  0.000
## sv2.274  1 -1.499 -0.737 0.033 0.711 -0.148
## sv2.279  1 -1.499 -0.737 0.033 0.711  0.279
## sv2.572  1 -1.499 -0.737 0.033 0.711  0.499
## sv2.644  1 -1.499 -0.737 0.033 0.711  0.556
## sv2.645  1 -1.499 -0.737 0.033 0.711 -0.141
## sv2.222  1 -1.499 -0.737 0.033 0.711  0.001
## sv2.223  1 -1.499 -0.737 0.033 0.711 -0.877
## sv2.648  1 -1.499 -0.737 0.033 0.711 -0.025
## Sv1.036  1 -1.499 -0.737 0.033 0.711  0.350
## sv2.221  1 -1.499 -0.737 0.033 0.711  0.550
## sv2.262  1 -1.499 -0.737 0.033 0.711  0.045
## Sv1.006  1 -1.499 -0.737 0.033 0.711 -0.155
## sv2.233  1 -1.499 -0.737 0.033 0.711 -0.167
## sv2.236  1 -1.499 -0.737 0.033 0.711  0.264
## Sv1.051  1 -1.499 -0.737 0.033 0.711  0.550
## sv2.228  1 -1.499 -0.737 0.033 0.711  0.867
## sv2.229  1 -1.499 -0.737 0.033 0.711  0.670
## sv2.235  1 -1.499 -0.737 0.033 0.711 -0.201
## sv2.290  1 -1.499 -0.737 0.033 0.711 -0.153
## sv2.574  1 -1.499 -0.737 0.033 0.711  0.033
## sv2.205  1 -1.499 -0.737 0.033 0.711  1.027
## sv2.257  1 -1.499 -0.737 0.033 0.711  1.031
## sv2.261  1 -1.499 -0.737 0.033 0.711  0.890
## sv2.244  1 -1.499 -0.737 0.033 0.711  0.110
## sv2.258  1 -1.499 -0.737 0.033 0.711  0.059
## sv2.585  1 -1.499 -0.737 0.033 0.711  0.403
## sv2.249  1 -1.499 -0.737 0.033 0.711  0.709
## sv2.251  1 -1.499 -0.737 0.033 0.711  0.792
## sv2.256  1 -1.499 -0.737 0.033 0.711  0.739
## sv2.683  1 -1.499 -0.737 0.033 0.711  0.026
## sv2.684  1 -1.499 -0.737 0.033 0.711  0.168
## sv2.685  1 -1.499 -0.737 0.033 0.711  0.037
## sv2.283  1 -1.499 -0.737 0.033 0.711 -0.317
## sv2.284  1 -1.499 -0.737 0.033 0.711 -0.435
## sv2.286  1 -1.499 -0.737 0.033 0.711 -0.035
## sv2.238  1 -1.499 -0.737 0.033 0.711  0.103
## sv2.240  1 -1.499 -0.737 0.033 0.711 -0.134
## sv2.686  1 -1.499 -0.737 0.033 0.711  0.078
## Sv1.077  1 -1.499 -0.737 0.033 0.711  0.235
## Sv1.091  1 -1.499 -0.737 0.033 0.711 -0.187
## sv2.219  1 -1.499 -0.737 0.033 0.711  0.166
## sv2.195  1 -1.499 -0.737 0.033 0.711 -0.338
## sv2.687  1 -1.499 -0.737 0.033 0.711  0.340
## sv2.688  1 -1.499 -0.737 0.033 0.711  0.181
## 
## $means
## F1 
##  0 
## 
## $cov
##      F1
## F1 0.49
  plot(mod_rsmIRT, type = "trace", which.items = c(1:8))

Mapas de construto com o pacote WrightMap
# Ative o pacote  
  library(WrightMap)

# Calcula os tehtas 
  thetas <- fscores(mod_rsmIRT, method = "ML")

# Cria dataframe com os thresholds 
  thresholds <-  coef(mod_rsmIRT , simplify=TRUE, irt.parms = TRUE)$items %>% 
    as.data.frame()

# Cria coditem
  thresholds$coditem <- rownames(thresholds)

# Calcula thtresholds em cada categori
  thresholds[ , 2:5] <-  thresholds[ , 2:5] + thresholds[ , 6]
  
# Traz informação dos itens 
  var_itens <- names(item_dic2)[c(1,3,5, 9:11)]
  thresholds <- left_join(thresholds, item_dic2[ , var_itens], by="coditem")
  thresholds <- thresholds %>% arrange(c)
  
# Mapa classico
  
  wrightMap(thetas, thresholds[ , 2:5], item.side = itemClassic, 
            return.thresholds = FALSE)

# Mapa mais elaborado
 
# Cores dos thresholds
  library(RColorBrewer)
  cores <- rep(brewer.pal(4, "Set1"), 45)
  threshold_col <- matrix(cores, byrow = TRUE, ncol = 4)
  
  library(stringr)
 
# Mapa de construto
   wrightMap(thetas, thresholds[ , 2:5],  
            main.title = "",
            item.prop = 0.75,                   # Proporçao espaço do item/theta
            show.thr.lab= FALSE,                # Nao mostra label dos thresholds
            thr.sym.col.fg = threshold_col,             # Colori os thresholds
            thr.sym.col.bg = threshold_col,
            thr.sym.cex = .8,                   # tamanho dos simbolos do thresshold
            axis.items="",                      # elimina label do eixo x
            label.items.srt=90,                 # ajusta item label para vertical
            label.items.cex = .4,               # tamanho da fonte dos itema
            label.items = str_sub(thresholds$item_text, 1, 20), # label dos itens 
            return.thresholds = FALSE, cutpoints = -1)

Mapa de construto baseado no modelo “Master’s Partial Credit model”
 source("http://www.labape.com.br/rprimi/R/make_construct_map5.R")

# Dicionário
  items <- item_dic2 %>% filter(factor == "C")

# Calibrando os itens modelo 
 mod_pcmIRT <- 
    df2 %>% select(items$coditem) %>% 
    mirt(1, itemtype = 'Rasch', TOL = .001)
## 
Iteration: 1, Log-Lik: -67603.268, Max-Change: 1.02227
Iteration: 2, Log-Lik: -66835.082, Max-Change: 0.16355
Iteration: 3, Log-Lik: -66824.495, Max-Change: 0.04569
Iteration: 4, Log-Lik: -66823.470, Max-Change: 0.03424
Iteration: 5, Log-Lik: -66822.645, Max-Change: 0.01408
Iteration: 6, Log-Lik: -66822.485, Max-Change: 0.00596
Iteration: 7, Log-Lik: -66822.440, Max-Change: 0.00575
Iteration: 8, Log-Lik: -66822.401, Max-Change: 0.00394
Iteration: 9, Log-Lik: -66822.372, Max-Change: 0.00336
Iteration: 10, Log-Lik: -66822.240, Max-Change: 0.00555
Iteration: 11, Log-Lik: -66822.221, Max-Change: 0.00125
Iteration: 12, Log-Lik: -66822.210, Max-Change: 0.00374
Iteration: 13, Log-Lik: -66822.198, Max-Change: 0.00083
# Parâmetros dos itens
  coef(mod_pcmIRT , simplify=TRUE, IRTpars = TRUE)
## $items
##         a     b1     b2     b3     b4
## sv2.209 1 -1.453 -0.695 -0.006  0.633
## sv2.274 1 -1.711 -0.527  0.315  0.698
## sv2.279 1 -1.912 -1.138 -0.523  0.948
## sv2.572 1 -1.156 -1.720 -0.331  0.124
## sv2.644 1 -1.466 -1.159 -0.599 -0.024
## sv2.645 1 -0.648 -0.496  0.106  0.204
## sv2.222 1 -1.962 -0.717  0.062  0.793
## sv2.223 1 -1.089  0.245  1.228  1.474
## sv2.648 1 -1.174 -0.590 -0.286  0.881
## Sv1.036 1 -1.361 -1.389 -0.552  0.740
## sv2.221 1 -1.451 -1.466 -0.680  0.293
## sv2.262 1 -1.065 -0.930 -0.369  1.119
## Sv1.006 1 -1.462 -0.653  0.280  0.837
## sv2.233 1 -1.681 -0.551  0.379  0.705
## sv2.236 1 -1.756 -0.755 -0.260  0.199
## Sv1.051 1 -1.453 -1.570 -0.722  0.412
## sv2.228 1 -1.067 -1.762 -0.711 -0.437
## sv2.229 1 -1.017 -1.621 -0.890  0.148
## sv2.235 1 -1.257 -0.423  0.170  0.737
## sv2.290 1 -1.286 -0.450  0.032  0.810
## sv2.574 1 -1.734 -0.554  0.101  0.300
## sv2.205 1 -1.323 -1.598 -0.902 -0.632
## sv2.257 1 -1.222 -1.421 -1.198 -0.491
## sv2.261 1 -1.125 -2.001 -0.792 -0.293
## sv2.244 1 -1.714 -0.545 -0.365  0.668
## sv2.258 1 -1.211 -0.452 -0.239  0.306
## sv2.585 1 -1.963 -1.039 -0.526  0.394
## sv2.249 1 -1.527 -1.873 -0.854  0.255
## sv2.251 1 -0.959 -2.250 -0.708 -0.067
## sv2.256 1 -1.138 -2.203 -0.746  0.131
## sv2.683 1 -1.715 -0.878  0.076  0.756
## sv2.684 1 -2.062 -0.729 -0.333  0.732
## sv2.685 1 -1.485 -0.779 -0.013  0.612
## sv2.283 1 -1.783 -0.486  0.583  1.144
## sv2.284 1 -1.413 -0.346  0.612  1.266
## sv2.286 1 -2.064 -0.843  0.215  0.920
## sv2.238 1 -1.554 -0.849 -0.021  0.470
## sv2.240 1 -1.920 -0.849  0.437  1.020
## sv2.686 1 -2.077 -0.998  0.136  0.702
## Sv1.077 1 -1.646 -0.980 -0.076  0.234
## Sv1.091 1 -1.427 -0.693  0.312  0.994
## sv2.219 1 -1.729 -1.196  0.098  0.486
## sv2.195 1 -1.381 -0.314  0.262  1.241
## sv2.687 1 -2.109 -1.132 -0.205  0.305
## sv2.688 1 -2.263 -1.042 -0.039  0.626
## 
## $means
## F1 
##  0 
## 
## $cov
##       F1
## F1 0.499
# Estima scpres dos sujeitos
  thetas <- fscores(mod_pcmIRT, method = "ML")  
  thetas[is.infinite(thetas)] <- NA


# Categorias
  categ_label <- c("nada", "pouco", "+ou-", "muito", "tudo")
  
# Faz o mapa
  make_construct_map5(mirtObj = mod_pcmIRT, 
                      dic =  items, 
                      data = df2, 
                      min = -4, max=4, 
                      categ_label = categ_label)
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
## Loading required package: xtable
## 
## Attaching package: 'likert'
## The following object is masked from 'package:dplyr':
## 
##     recode
## Loading required package: grid
## Warning: Removed 3 rows containing non-finite values (stat_bin).

  plot(mod_pcmIRT, type = 'rxx')