library(tidyverse)
library(sjmisc)
library(TAM)
library(mirt)
library(psych)
library(readxl)
library(knitr)
library(RColorBrewer)
#library(xlsx)
source("http://www.labape.com.br/rprimi/R/utils_construct_maps.R")
# Abre direto da internet (con é um endereço do arquivo)
con<-url("http://www.labape.com.br/rprimi/TRI/2019_slides_exerc/senna_v1_54_ex3.RDS")
sennav1 <- readRDS(con)
con<-url("http://www.labape.com.br/rprimi/TRI/2019_slides_exerc/senna_v1_54_ex3_dic.RDS")
dic <- readRDS(con)
sennav1$senna_it_rspnd <- apply(
sennav1[ , 1:54],
MARGIN = 1,
function(x){sum(!is.na(x))}
)
frq(sennav1$senna_it_rspnd)
##
## # x <integer>
## # total N=11249 valid N=11249 mean=51.32 sd=8.99
##
## val frq raw.prc valid.prc cum.prc
## 0 33 0.29 0.29 0.29
## 1 60 0.53 0.53 0.83
## 2 104 0.92 0.92 1.75
## 3 60 0.53 0.53 2.28
## 4 26 0.23 0.23 2.52
## 5 10 0.09 0.09 2.60
## 6 17 0.15 0.15 2.76
## 7 10 0.09 0.09 2.84
## 8 3 0.03 0.03 2.87
## 9 4 0.04 0.04 2.91
## 10 9 0.08 0.08 2.99
## 11 3 0.03 0.03 3.01
## 12 2 0.02 0.02 3.03
## 13 1 0.01 0.01 3.04
## 14 1 0.01 0.01 3.05
## 15 2 0.02 0.02 3.07
## 17 3 0.03 0.03 3.09
## 18 2 0.02 0.02 3.11
## 19 2 0.02 0.02 3.13
## 20 1 0.01 0.01 3.14
## 21 1 0.01 0.01 3.15
## 22 4 0.04 0.04 3.18
## 23 3 0.03 0.03 3.21
## 24 2 0.02 0.02 3.23
## 25 2 0.02 0.02 3.24
## 26 4 0.04 0.04 3.28
## 27 5 0.04 0.04 3.32
## 28 5 0.04 0.04 3.37
## 29 4 0.04 0.04 3.40
## 30 2 0.02 0.02 3.42
## 31 2 0.02 0.02 3.44
## 32 6 0.05 0.05 3.49
## 33 7 0.06 0.06 3.56
## 34 5 0.04 0.04 3.60
## 35 5 0.04 0.04 3.64
## 36 4 0.04 0.04 3.68
## 37 4 0.04 0.04 3.72
## 38 7 0.06 0.06 3.78
## 39 6 0.05 0.05 3.83
## 40 6 0.05 0.05 3.88
## 41 8 0.07 0.07 3.96
## 42 12 0.11 0.11 4.06
## 43 16 0.14 0.14 4.20
## 44 14 0.12 0.12 4.33
## 45 26 0.23 0.23 4.56
## 46 29 0.26 0.26 4.82
## 47 66 0.59 0.59 5.40
## 48 72 0.64 0.64 6.04
## 49 150 1.33 1.33 7.38
## 50 248 2.20 2.20 9.58
## 51 548 4.87 4.87 14.45
## 52 1199 10.66 10.66 25.11
## 53 2678 23.81 23.81 48.92
## 54 5746 51.08 51.08 100.00
## <NA> 0 0.00 NA NA
sennav1 <- sennav1 %>% filter( senna_it_rspnd >=30 )
dic_e <- dic %>% filter(factor == "E")
vars_e <- dic_e$coditem
labels_e <- dic_e$text
poles_e <- dic_e$pole
dt <- sennav1[ , vars_e]
dt <- mutate_if(dt, poles_e == 0, ~(6 -.))
dt <- map_df(dt, ~.-1)
map(dt, frq)
## $i67.E.Soc.00
##
## # x <numeric>
## # total N=10866 valid N=10626 mean=2.20 sd=1.30
##
## val frq raw.prc valid.prc cum.prc
## 0 1443 13.28 13.58 13.58
## 1 1747 16.08 16.44 30.02
## 2 2707 24.91 25.48 55.50
## 3 2713 24.97 25.53 81.03
## 4 2016 18.55 18.97 100.00
## <NA> 240 2.21 NA NA
##
##
## $i73.E.Soc.00
##
## # x <numeric>
## # total N=10866 valid N=10637 mean=2.62 sd=1.23
##
## val frq raw.prc valid.prc cum.prc
## 0 814 7.49 7.65 7.65
## 1 1138 10.47 10.70 18.35
## 2 2601 23.94 24.45 42.80
## 3 2839 26.13 26.69 69.49
## 4 3245 29.86 30.51 100.00
## <NA> 229 2.11 NA NA
##
##
## $i55.E.Act.10
##
## # x <numeric>
## # total N=10866 valid N=10555 mean=2.96 sd=1.09
##
## val frq raw.prc valid.prc cum.prc
## 0 304 2.80 2.88 2.88
## 1 884 8.14 8.38 11.26
## 2 1989 18.30 18.84 30.10
## 3 3134 28.84 29.69 59.79
## 4 4244 39.06 40.21 100.00
## <NA> 311 2.86 NA NA
##
##
## $i63.E.Act.10
##
## # x <numeric>
## # total N=10866 valid N=10677 mean=2.72 sd=1.13
##
## val frq raw.prc valid.prc cum.prc
## 0 419 3.86 3.92 3.92
## 1 1227 11.29 11.49 15.42
## 2 2538 23.36 23.77 39.19
## 3 3224 29.67 30.20 69.38
## 4 3269 30.08 30.62 100.00
## <NA> 189 1.74 NA NA
##
##
## $i76.E.Act.10
##
## # x <numeric>
## # total N=10866 valid N=10667 mean=2.07 sd=1.26
##
## val frq raw.prc valid.prc cum.prc
## 0 1470 13.53 13.78 13.78
## 1 2099 19.32 19.68 33.46
## 2 2964 27.28 27.79 61.24
## 3 2470 22.73 23.16 84.40
## 4 1664 15.31 15.60 100.00
## <NA> 199 1.83 NA NA
##
##
## $i71.E.Soc.10
##
## # x <numeric>
## # total N=10866 valid N=10648 mean=2.83 sd=1.11
##
## val frq raw.prc valid.prc cum.prc
## 0 350 3.22 3.29 3.29
## 1 1177 10.83 11.05 14.34
## 2 2043 18.80 19.19 33.53
## 3 3478 32.01 32.66 66.19
## 4 3600 33.13 33.81 100.00
## <NA> 218 2.01 NA NA
##
##
## $i75.E.Soc.10
##
## # x <numeric>
## # total N=10866 valid N=10619 mean=2.71 sd=1.15
##
## val frq raw.prc valid.prc cum.prc
## 0 528 4.86 4.97 4.97
## 1 1228 11.30 11.56 16.54
## 2 2129 19.59 20.05 36.59
## 3 3632 33.43 34.20 70.79
## 4 3102 28.55 29.21 100.00
## <NA> 247 2.27 NA NA
##
##
## $i84.E.Soc.11
##
## # x <numeric>
## # total N=10866 valid N=10690 mean=2.77 sd=1.03
##
## val frq raw.prc valid.prc cum.prc
## 0 311 2.86 2.91 2.91
## 1 1021 9.40 9.55 12.46
## 2 2229 20.51 20.85 33.31
## 3 4370 40.22 40.88 74.19
## 4 2759 25.39 25.81 100.00
## <NA> 176 1.62 NA NA
##
##
## $i87.E.Soc.11
##
## # x <numeric>
## # total N=10866 valid N=10715 mean=1.58 sd=1.18
##
## val frq raw.prc valid.prc cum.prc
## 0 2275 20.94 21.23 21.23
## 1 3065 28.21 28.60 49.84
## 2 2981 27.43 27.82 77.66
## 3 1664 15.31 15.53 93.19
## 4 730 6.72 6.81 100.00
## <NA> 151 1.39 NA NA
fit1 <- tam.mml(
dt,
ndim = 1,
irtmodel = "PCM",
control=list( maxiter=100)
)
## ....................................................
## Processing Data 2019-11-24 19:54:25
## * Response Data: 10866 Persons and 9 Items
## * Numerical integration with 21 nodes
## * Created Design Matrices ( 2019-11-24 19:54:25 )
## * Calculated Sufficient Statistics ( 2019-11-24 19:54:25 )
## ....................................................
## Iteration 1 2019-11-24 19:54:25
## E Step
## M Step Intercepts |----
## Deviance = 286889.6543
## Maximum item intercept parameter change: 0.794244
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.156315
## ....................................................
## Iteration 2 2019-11-24 19:54:25
## E Step
## M Step Intercepts |----
## Deviance = 276856.0961 | Absolute change: 10033.56 | Relative change: 0.03624106
## Maximum item intercept parameter change: 0.693209
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.268314
## ....................................................
## Iteration 3 2019-11-24 19:54:25
## E Step
## M Step Intercepts |----
## Deviance = 273517.8611 | Absolute change: 3338.235 | Relative change: 0.01220482
## Maximum item intercept parameter change: 0.457036
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.142211
## ....................................................
## Iteration 4 2019-11-24 19:54:25
## E Step
## M Step Intercepts |----
## Deviance = 272484.0783 | Absolute change: 1033.783 | Relative change: 0.00379392
## Maximum item intercept parameter change: 0.120343
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.070987
## ....................................................
## Iteration 5 2019-11-24 19:54:25
## E Step
## M Step Intercepts |----
## Deviance = 272089.6687 | Absolute change: 394.4096 | Relative change: 0.00144956
## Maximum item intercept parameter change: 0.066834
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.038997
## ....................................................
## Iteration 6 2019-11-24 19:54:25
## E Step
## M Step Intercepts |----
## Deviance = 271908.7761 | Absolute change: 180.8926 | Relative change: 0.00066527
## Maximum item intercept parameter change: 0.047935
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.023636
## ....................................................
## Iteration 7 2019-11-24 19:54:25
## E Step
## M Step Intercepts |----
## Deviance = 271819.8161 | Absolute change: 88.96 | Relative change: 0.00032728
## Maximum item intercept parameter change: 0.026896
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.014839
## ....................................................
## Iteration 8 2019-11-24 19:54:25
## E Step
## M Step Intercepts |----
## Deviance = 271772.6528 | Absolute change: 47.1633 | Relative change: 0.00017354
## Maximum item intercept parameter change: 0.020541
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.009983
## ....................................................
## Iteration 9 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271745.9467 | Absolute change: 26.7061 | Relative change: 9.828e-05
## Maximum item intercept parameter change: 0.01595
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00695
## ....................................................
## Iteration 10 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271730.4945 | Absolute change: 15.4522 | Relative change: 5.687e-05
## Maximum item intercept parameter change: 0.012316
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.004994
## ....................................................
## Iteration 11 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271721.4086 | Absolute change: 9.0859 | Relative change: 3.344e-05
## Maximum item intercept parameter change: 0.009444
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00366
## ....................................................
## Iteration 12 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271716.0746 | Absolute change: 5.3341 | Relative change: 1.963e-05
## Maximum item intercept parameter change: 0.007242
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002737
## ....................................................
## Iteration 13 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271712.9442 | Absolute change: 3.1304 | Relative change: 1.152e-05
## Maximum item intercept parameter change: 0.005542
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002059
## ....................................................
## Iteration 14 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271711.1118 | Absolute change: 1.8325 | Relative change: 6.74e-06
## Maximum item intercept parameter change: 0.004224
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001564
## ....................................................
## Iteration 15 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271710.0375 | Absolute change: 1.0742 | Relative change: 3.95e-06
## Maximum item intercept parameter change: 0.003204
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001192
## ....................................................
## Iteration 16 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271709.4129 | Absolute change: 0.6246 | Relative change: 2.3e-06
## Maximum item intercept parameter change: 0.00244
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00091
## ....................................................
## Iteration 17 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271709.0484 | Absolute change: 0.3645 | Relative change: 1.34e-06
## Maximum item intercept parameter change: 0.001857
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000696
## ....................................................
## Iteration 18 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271708.837 | Absolute change: 0.2114 | Relative change: 7.8e-07
## Maximum item intercept parameter change: 0.001416
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000531
## ....................................................
## Iteration 19 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271708.7139 | Absolute change: 0.1231 | Relative change: 4.5e-07
## Maximum item intercept parameter change: 0.001078
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000408
## ....................................................
## Iteration 20 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271708.6426 | Absolute change: 0.0713 | Relative change: 2.6e-07
## Maximum item intercept parameter change: 0.000821
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00031
## ....................................................
## Iteration 21 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271708.6012 | Absolute change: 0.0414 | Relative change: 1.5e-07
## Maximum item intercept parameter change: 0.000625
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000238
## ....................................................
## Iteration 22 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271708.5772 | Absolute change: 0.024 | Relative change: 9e-08
## Maximum item intercept parameter change: 0.000477
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000181
## ....................................................
## Iteration 23 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271708.5634 | Absolute change: 0.0139 | Relative change: 5e-08
## Maximum item intercept parameter change: 0.000362
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000138
## ....................................................
## Iteration 24 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271708.5553 | Absolute change: 0.0081 | Relative change: 3e-08
## Maximum item intercept parameter change: 0.000276
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000105
## ....................................................
## Iteration 25 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271708.5506 | Absolute change: 0.0047 | Relative change: 2e-08
## Maximum item intercept parameter change: 0.00021
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 8.1e-05
## ....................................................
## Iteration 26 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271708.5479 | Absolute change: 0.0027 | Relative change: 1e-08
## Maximum item intercept parameter change: 0.000161
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 6.1e-05
## ....................................................
## Iteration 27 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271708.5464 | Absolute change: 0.0016 | Relative change: 1e-08
## Maximum item intercept parameter change: 0.000122
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 4.7e-05
## ....................................................
## Iteration 28 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----
## Deviance = 271708.5455 | Absolute change: 9e-04 | Relative change: 0
## Maximum item intercept parameter change: 9.3e-05
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 3.6e-05
## ....................................................
## Item Parameters
## xsi.index xsi.label est
## 1 1 i67.E.Soc.00_Cat1 -0.5015
## 2 2 i67.E.Soc.00_Cat2 -0.5698
## 3 3 i67.E.Soc.00_Cat3 0.0490
## 4 4 i67.E.Soc.00_Cat4 0.5424
## 5 5 i73.E.Soc.00_Cat1 -0.7241
## 6 6 i73.E.Soc.00_Cat2 -1.0377
## 7 7 i73.E.Soc.00_Cat3 -0.1149
## 8 8 i73.E.Soc.00_Cat4 0.0340
## 9 9 i55.E.Act.10_Cat1 -1.5364
## 10 10 i55.E.Act.10_Cat2 -1.0963
## 11 11 i55.E.Act.10_Cat3 -0.5510
## 12 12 i55.E.Act.10_Cat4 -0.1994
## 13 13 i63.E.Act.10_Cat1 -1.4952
## 14 14 i63.E.Act.10_Cat2 -0.9638
## 15 15 i63.E.Act.10_Cat3 -0.2872
## 16 16 i63.E.Act.10_Cat4 0.1381
## 17 17 i76.E.Act.10_Cat1 -0.6471
## 18 18 i76.E.Act.10_Cat2 -0.4543
## 19 19 i76.E.Act.10_Cat3 0.2593
## 20 20 i76.E.Act.10_Cat4 0.6690
## 21 21 i71.E.Soc.10_Cat1 -1.6527
## 22 22 i71.E.Soc.10_Cat2 -0.8072
## 23 23 i71.E.Soc.10_Cat3 -0.5987
## 24 24 i71.E.Soc.10_Cat4 0.0988
## 25 25 i75.E.Soc.10_Cat1 -1.2609
## 26 26 i75.E.Soc.10_Cat2 -0.7851
## 27 27 i75.E.Soc.10_Cat3 -0.5810
## 28 28 i75.E.Soc.10_Cat4 0.3099
## 29 29 i84.E.Soc.11_Cat1 -1.6305
## 30 30 i84.E.Soc.11_Cat2 -1.0334
## 31 31 i84.E.Soc.11_Cat3 -0.7313
## 32 32 i84.E.Soc.11_Cat4 0.6076
## 33 33 i87.E.Soc.11_Cat1 -0.5055
## 34 34 i87.E.Soc.11_Cat2 0.0097
## 35 35 i87.E.Soc.11_Cat3 0.7596
## 36 36 i87.E.Soc.11_Cat4 1.2053
## ...................................
## Regression Coefficients
## [,1]
## [1,] 0
##
## Variance:
## [,1]
## [1,] 0.2478
##
##
## EAP Reliability:
## [1] 0.696
##
## -----------------------------
## Start: 2019-11-24 19:54:25
## End: 2019-11-24 19:54:26
## Time difference of 0.982187 secs
summary(fit1)
## ------------------------------------------------------------
## TAM 3.1-45 (2019-03-18 16:53:26)
## R version 3.5.1 (2018-07-02) x86_64, darwin15.6.0 | nodename=MacBookPro2018.local | login=rprimi
##
## Date of Analysis: 2019-11-24 19:54:26
## Time difference of 0.982187 secs
## Computation time: 0.982187
##
## Multidimensional Item Response Model in TAM
##
## IRT Model: PCM
## Call:
## tam.mml(resp = dt, irtmodel = "PCM", ndim = 1, control = list(maxiter = 100))
##
## ------------------------------------------------------------
## Number of iterations = 28
## Numeric integration with 21 integration points
##
## Deviance = 271708.5
## Log likelihood = -135854.3
## Number of persons = 10866
## Number of persons used = 10866
## Number of items = 9
## Number of estimated parameters = 37
## Item threshold parameters = 36
## Item slope parameters = 0
## Regression parameters = 0
## Variance/covariance parameters = 1
##
## AIC = 271783 | penalty = 74 | AIC=-2*LL + 2*p
## AIC3 = 271820 | penalty = 111 | AIC3=-2*LL + 3*p
## BIC = 272052 | penalty = 343.86 | BIC=-2*LL + log(n)*p
## aBIC = 271935 | penalty = 226.26 | aBIC=-2*LL + log((n-2)/24)*p (adjusted BIC)
## CAIC = 272089 | penalty = 380.86 | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)
## AICc = 271783 | penalty = 74.26 | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)
##
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.696
## ------------------------------------------------------------
## Covariances and Variances
## [,1]
## [1,] 0.248
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
## [,1]
## [1,] 0.498
## ------------------------------------------------------------
## Regression Coefficients
## [,1]
## [1,] 0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
## item N M xsi.item AXsi_.Cat1 AXsi_.Cat2
## i67.E.Soc.00 i67.E.Soc.00 10626 2.199 -0.120 -0.502 -1.071
## i73.E.Soc.00 i73.E.Soc.00 10637 2.617 -0.461 -0.724 -1.762
## i55.E.Act.10 i55.E.Act.10 10555 2.960 -0.846 -1.536 -2.633
## i63.E.Act.10 i63.E.Act.10 10677 2.721 -0.652 -1.495 -2.459
## i76.E.Act.10 i76.E.Act.10 10667 2.071 -0.043 -0.647 -1.101
## i71.E.Soc.10 i71.E.Soc.10 10648 2.827 -0.740 -1.653 -2.460
## i75.E.Soc.10 i75.E.Soc.10 10619 2.711 -0.579 -1.261 -2.046
## i84.E.Soc.11 i84.E.Soc.11 10690 2.771 -0.697 -1.631 -2.664
## i87.E.Soc.11 i87.E.Soc.11 10715 1.581 0.367 -0.506 -0.496
## AXsi_.Cat3 AXsi_.Cat4 B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1
## i67.E.Soc.00 -1.022 -0.480 1 2 3
## i73.E.Soc.00 -1.877 -1.843 1 2 3
## i55.E.Act.10 -3.184 -3.383 1 2 3
## i63.E.Act.10 -2.746 -2.608 1 2 3
## i76.E.Act.10 -0.842 -0.173 1 2 3
## i71.E.Soc.10 -3.059 -2.960 1 2 3
## i75.E.Soc.10 -2.627 -2.317 1 2 3
## i84.E.Soc.11 -3.395 -2.788 1 2 3
## i87.E.Soc.11 0.264 1.469 1 2 3
## B.Cat4.Dim1
## i67.E.Soc.00 4
## i73.E.Soc.00 4
## i55.E.Act.10 4
## i63.E.Act.10 4
## i76.E.Act.10 4
## i71.E.Soc.10 4
## i75.E.Soc.10 4
## i84.E.Soc.11 4
## i87.E.Soc.11 4
##
## Item Parameters Xsi
## xsi se.xsi
## i67.E.Soc.00_Cat1 -0.502 0.030
## i67.E.Soc.00_Cat2 -0.570 0.023
## i67.E.Soc.00_Cat3 0.049 0.021
## i67.E.Soc.00_Cat4 0.542 0.026
## i73.E.Soc.00_Cat1 -0.724 0.038
## i73.E.Soc.00_Cat2 -1.038 0.027
## i73.E.Soc.00_Cat3 -0.115 0.021
## i73.E.Soc.00_Cat4 0.034 0.023
## i55.E.Act.10_Cat1 -1.536 0.060
## i55.E.Act.10_Cat2 -1.096 0.033
## i55.E.Act.10_Cat3 -0.551 0.023
## i55.E.Act.10_Cat4 -0.199 0.021
## i63.E.Act.10_Cat1 -1.495 0.051
## i63.E.Act.10_Cat2 -0.964 0.029
## i63.E.Act.10_Cat3 -0.287 0.022
## i63.E.Act.10_Cat4 0.138 0.022
## i76.E.Act.10_Cat1 -0.647 0.030
## i76.E.Act.10_Cat2 -0.454 0.022
## i76.E.Act.10_Cat3 0.259 0.022
## i76.E.Act.10_Cat4 0.669 0.028
## i71.E.Soc.10_Cat1 -1.653 0.056
## i71.E.Soc.10_Cat2 -0.807 0.030
## i71.E.Soc.10_Cat3 -0.599 0.022
## i71.E.Soc.10_Cat4 0.099 0.022
## i75.E.Soc.10_Cat1 -1.261 0.046
## i75.E.Soc.10_Cat2 -0.785 0.028
## i75.E.Soc.10_Cat3 -0.581 0.022
## i75.E.Soc.10_Cat4 0.310 0.023
## i84.E.Soc.11_Cat1 -1.631 0.059
## i84.E.Soc.11_Cat2 -1.033 0.031
## i84.E.Soc.11_Cat3 -0.731 0.022
## i84.E.Soc.11_Cat4 0.608 0.023
## i87.E.Soc.11_Cat1 -0.506 0.025
## i87.E.Soc.11_Cat2 0.010 0.021
## i87.E.Soc.11_Cat3 0.760 0.025
## i87.E.Soc.11_Cat4 1.205 0.040
##
## Item Parameters in IRT parameterization
## item alpha beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1 i67.E.Soc.00 1 -0.120 -0.382 -0.450 0.169 0.662
## 2 i73.E.Soc.00 1 -0.461 -0.263 -0.577 0.346 0.495
## 3 i55.E.Act.10 1 -0.846 -0.691 -0.251 0.295 0.646
## 4 i63.E.Act.10 1 -0.652 -0.843 -0.312 0.365 0.790
## 5 i76.E.Act.10 1 -0.043 -0.604 -0.411 0.303 0.712
## 6 i71.E.Soc.10 1 -0.740 -0.913 -0.067 0.141 0.839
## 7 i75.E.Soc.10 1 -0.579 -0.682 -0.206 -0.002 0.889
## 8 i84.E.Soc.11 1 -0.697 -0.934 -0.337 -0.034 1.305
## 9 i87.E.Soc.11 1 0.367 -0.873 -0.358 0.392 0.838
Henninger, M. (2019) Psychometric modeling as a tool to investigate heterogeneous response scale use. Open Access Mannheim, Germany [Dissertation] https://madoc.bib.uni-mannheim.de/52490/
Plieninger, H. (2018). Towards a deeper understanding of response styles through psychometrics (Doctoral dissertation). Retrieved from: https://ub-madoc.bib.uni-mannheim.de/44325
design1 <- TAM::designMatrices(resp=dt, modeltype=c("PCM"), ndim = 1 )
design2 <- TAM::designMatrices(resp=dt, modeltype=c("PCM"), ndim = 2 )
design1$B
## , , Dim01
##
## Cat0 Cat1 Cat2 Cat3 Cat4
## i67.E.Soc.00 0 1 2 3 4
## i73.E.Soc.00 0 1 2 3 4
## i55.E.Act.10 0 1 2 3 4
## i63.E.Act.10 0 1 2 3 4
## i76.E.Act.10 0 1 2 3 4
## i71.E.Soc.10 0 1 2 3 4
## i75.E.Soc.10 0 1 2 3 4
## i84.E.Soc.11 0 1 2 3 4
## i87.E.Soc.11 0 1 2 3 4
design2$B
## , , Dim01
##
## Cat0 Cat1 Cat2 Cat3 Cat4
## i67.E.Soc.00 0 0 0 0 0
## i73.E.Soc.00 0 0 0 0 0
## i55.E.Act.10 0 0 0 0 0
## i63.E.Act.10 0 0 0 0 0
## i76.E.Act.10 0 0 0 0 0
## i71.E.Soc.10 0 0 0 0 0
## i75.E.Soc.10 0 0 0 0 0
## i84.E.Soc.11 0 0 0 0 0
## i87.E.Soc.11 0 0 0 0 0
##
## , , Dim02
##
## Cat0 Cat1 Cat2 Cat3 Cat4
## i67.E.Soc.00 0 1 2 3 4
## i73.E.Soc.00 0 0 0 0 0
## i55.E.Act.10 0 1 2 3 4
## i63.E.Act.10 0 0 0 0 0
## i76.E.Act.10 0 0 0 0 0
## i71.E.Soc.10 0 1 2 3 4
## i75.E.Soc.10 0 0 0 0 0
## i84.E.Soc.11 0 0 0 0 0
## i87.E.Soc.11 0 0 0 0 0
dim(design2$B)
## [1] 9 5 2
design2$B[ ,, 1] <- design1$B
design2$B[ ,, 2] <- design1$B
design2$B[1 ,, 2] <- c(4,3,2,1,0)
design2$B[2 ,, 2] <- c(4,3,2,1,0)
dimnames( design2$B)[[3]] <- c("trait", "acq")
B <-design2$B
fit2 <- tam.mml(
dt,
irtmodel = "PCM",
B = B,
control=list( maxiter=100,
increment.factor=1.03,
fac.oldxsi=.4,
Msteps=10)
)
## ....................................................
## Processing Data 2019-11-24 19:54:26
## * Response Data: 10866 Persons and 9 Items
## * Numerical integration with 441 nodes
## * Created Design Matrices ( 2019-11-24 19:54:26 )
## * Calculated Sufficient Statistics ( 2019-11-24 19:54:26 )
## ....................................................
## Iteration 1 2019-11-24 19:54:26
## E Step
## M Step Intercepts |----------
## Deviance = 280988.807
## Maximum item intercept parameter change: 0.202114
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.351722
## ....................................................
## Iteration 2 2019-11-24 19:54:27
## E Step
## M Step Intercepts |----------
## Deviance = 278848.5355 | Absolute change: 2140.271 | Relative change: 0.00767539
## Maximum item intercept parameter change: 0.10396
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.095716
## ....................................................
## Iteration 3 2019-11-24 19:54:28
## E Step
## M Step Intercepts |----------
## Deviance = 278358.3106 | Absolute change: 490.2249 | Relative change: 0.00176113
## Maximum item intercept parameter change: 0.205906
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.043352
## ....................................................
## Iteration 4 2019-11-24 19:54:28
## E Step
## M Step Intercepts |----------
## Deviance = 277921.2584 | Absolute change: 437.0522 | Relative change: 0.00157258
## Maximum item intercept parameter change: 0.111823
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.024928
## ....................................................
## Iteration 5 2019-11-24 19:54:29
## E Step
## M Step Intercepts |----------
## Deviance = 277697.0989 | Absolute change: 224.1595 | Relative change: 0.00080721
## Maximum item intercept parameter change: 0.022797
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.015701
## ....................................................
## Iteration 6 2019-11-24 19:54:29
## E Step
## M Step Intercepts |----------
## Deviance = 277540.2308 | Absolute change: 156.8682 | Relative change: 0.00056521
## Maximum item intercept parameter change: 0.021498
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.010461
## ....................................................
## Iteration 7 2019-11-24 19:54:30
## E Step
## M Step Intercepts |----------
## Deviance = 277393.7693 | Absolute change: 146.4615 | Relative change: 0.00052799
## Maximum item intercept parameter change: 0.020246
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.007506
## ....................................................
## Iteration 8 2019-11-24 19:54:30
## E Step
## M Step Intercepts |----------
## Deviance = 277253.7921 | Absolute change: 139.9772 | Relative change: 0.00050487
## Maximum item intercept parameter change: 0.019042
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.006566
## ....................................................
## Iteration 9 2019-11-24 19:54:31
## E Step
## M Step Intercepts |----------
## Deviance = 277120.8445 | Absolute change: 132.9475 | Relative change: 0.00047975
## Maximum item intercept parameter change: 0.14285
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.006107
## ....................................................
## Iteration 10 2019-11-24 19:54:31
## E Step
## M Step Intercepts |----------
## Deviance = 276909.5306 | Absolute change: 211.314 | Relative change: 0.00076312
## Maximum item intercept parameter change: 0.065292
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.007765
## ....................................................
## Iteration 11 2019-11-24 19:54:32
## E Step
## M Step Intercepts |----------
## Deviance = 276776.0185 | Absolute change: 133.5121 | Relative change: 0.00048238
## Maximum item intercept parameter change: 0.032385
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.006669
## ....................................................
## Iteration 12 2019-11-24 19:54:32
## E Step
## M Step Intercepts |----------
## Deviance = 276654.9591 | Absolute change: 121.0593 | Relative change: 0.00043758
## Maximum item intercept parameter change: 0.014604
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00592
## ....................................................
## Iteration 13 2019-11-24 19:54:33
## E Step
## M Step Intercepts |----------
## Deviance = 276540.7647 | Absolute change: 114.1944 | Relative change: 0.00041294
## Maximum item intercept parameter change: 0.010435
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.005165
## ....................................................
## Iteration 14 2019-11-24 19:54:33
## E Step
## M Step Intercepts |----------
## Deviance = 276432.3792 | Absolute change: 108.3856 | Relative change: 0.00039209
## Maximum item intercept parameter change: 0.009899
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.004754
## ....................................................
## Iteration 15 2019-11-24 19:54:34
## E Step
## M Step Intercepts |----------
## Deviance = 276326.3174 | Absolute change: 106.0618 | Relative change: 0.00038383
## Maximum item intercept parameter change: 0.074281
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.004552
## ....................................................
## Iteration 16 2019-11-24 19:54:34
## E Step
## M Step Intercepts |----------
## Deviance = 276207.8067 | Absolute change: 118.5107 | Relative change: 0.00042906
## Maximum item intercept parameter change: 0.03298
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.005248
## ....................................................
## Iteration 17 2019-11-24 19:54:35
## E Step
## M Step Intercepts |----------
## Deviance = 276107.3774 | Absolute change: 100.4293 | Relative change: 0.00036373
## Maximum item intercept parameter change: 0.015466
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.004916
## ....................................................
## Iteration 18 2019-11-24 19:54:35
## E Step
## M Step Intercepts |----------
## Deviance = 276012.7618 | Absolute change: 94.6156 | Relative change: 0.00034279
## Maximum item intercept parameter change: 0.009251
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.004512
## ....................................................
## Iteration 19 2019-11-24 19:54:35
## E Step
## M Step Intercepts |----------
## Deviance = 275920.8112 | Absolute change: 91.9506 | Relative change: 0.00033325
## Maximum item intercept parameter change: 0.009143
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.004136
## ....................................................
## Iteration 20 2019-11-24 19:54:36
## E Step
## M Step Intercepts |----------
## Deviance = 275830.5512 | Absolute change: 90.26 | Relative change: 0.00032723
## Maximum item intercept parameter change: 0.026528
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00397
## ....................................................
## Iteration 21 2019-11-24 19:54:36
## E Step
## M Step Intercepts |----------
## Deviance = 275738.8516 | Absolute change: 91.6997 | Relative change: 0.00033256
## Maximum item intercept parameter change: 0.008907
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.004189
## ....................................................
## Iteration 22 2019-11-24 19:54:37
## E Step
## M Step Intercepts |----------
## Deviance = 275652.092 | Absolute change: 86.7596 | Relative change: 0.00031474
## Maximum item intercept parameter change: 0.040693
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003926
## ....................................................
## Iteration 23 2019-11-24 19:54:37
## E Step
## M Step Intercepts |----------
## Deviance = 275566.3952 | Absolute change: 85.6967 | Relative change: 0.00031098
## Maximum item intercept parameter change: 0.055037
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003985
## ....................................................
## Iteration 24 2019-11-24 19:54:38
## E Step
## M Step Intercepts |----------
## Deviance = 275472.7291 | Absolute change: 93.6662 | Relative change: 0.00034002
## Maximum item intercept parameter change: 0.00781
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00408
## ....................................................
## Iteration 25 2019-11-24 19:54:38
## E Step
## M Step Intercepts |----------
## Deviance = 275399.8647 | Absolute change: 72.8644 | Relative change: 0.00026458
## Maximum item intercept parameter change: 0.014679
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003676
## ....................................................
## Iteration 26 2019-11-24 19:54:39
## E Step
## M Step Intercepts |----------
## Deviance = 275327.7283 | Absolute change: 72.1364 | Relative change: 0.000262
## Maximum item intercept parameter change: 0.007181
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003684
## ....................................................
## Iteration 27 2019-11-24 19:54:39
## E Step
## M Step Intercepts |----------
## Deviance = 275259.528 | Absolute change: 68.2003 | Relative change: 0.00024777
## Maximum item intercept parameter change: 0.007097
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003374
## ....................................................
## Iteration 28 2019-11-24 19:54:39
## E Step
## M Step Intercepts |----------
## Deviance = 275192.4567 | Absolute change: 67.0712 | Relative change: 0.00024372
## Maximum item intercept parameter change: 0.007012
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003213
## ....................................................
## Iteration 29 2019-11-24 19:54:40
## E Step
## M Step Intercepts |----------
## Deviance = 275126.7604 | Absolute change: 65.6963 | Relative change: 0.00023879
## Maximum item intercept parameter change: 0.029034
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003115
## ....................................................
## Iteration 30 2019-11-24 19:54:40
## E Step
## M Step Intercepts |----------
## Deviance = 275062.7117 | Absolute change: 64.0487 | Relative change: 0.00023285
## Maximum item intercept parameter change: 0.006532
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00325
## ....................................................
## Iteration 31 2019-11-24 19:54:41
## E Step
## M Step Intercepts |----------
## Deviance = 275003.2707 | Absolute change: 59.4409 | Relative change: 0.00021615
## Maximum item intercept parameter change: 0.006411
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003001
## ....................................................
## Iteration 32 2019-11-24 19:54:41
## E Step
## M Step Intercepts |----------
## Deviance = 274945.1788 | Absolute change: 58.0919 | Relative change: 0.00021129
## Maximum item intercept parameter change: 0.006289
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002883
## ....................................................
## Iteration 33 2019-11-24 19:54:42
## E Step
## M Step Intercepts |----------
## Deviance = 274887.9793 | Absolute change: 57.1996 | Relative change: 0.00020808
## Maximum item intercept parameter change: 0.006168
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002821
## ....................................................
## Iteration 34 2019-11-24 19:54:42
## E Step
## M Step Intercepts |----------
## Deviance = 274831.9415 | Absolute change: 56.0377 | Relative change: 0.0002039
## Maximum item intercept parameter change: 0.012134
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002778
## ....................................................
## Iteration 35 2019-11-24 19:54:43
## E Step
## M Step Intercepts |----------
## Deviance = 274779.3063 | Absolute change: 52.6353 | Relative change: 0.00019155
## Maximum item intercept parameter change: 0.022014
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002835
## ....................................................
## Iteration 36 2019-11-24 19:54:43
## E Step
## M Step Intercepts |----------
## Deviance = 274724.8299 | Absolute change: 54.4764 | Relative change: 0.00019829
## Maximum item intercept parameter change: 0.030423
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003137
## ....................................................
## Iteration 37 2019-11-24 19:54:44
## E Step
## M Step Intercepts |----------
## Deviance = 274669.8108 | Absolute change: 55.019 | Relative change: 0.00020031
## Maximum item intercept parameter change: 0.005603
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003024
## ....................................................
## Iteration 38 2019-11-24 19:54:44
## E Step
## M Step Intercepts |----------
## Deviance = 274619.9548 | Absolute change: 49.856 | Relative change: 0.00018155
## Maximum item intercept parameter change: 0.013151
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002775
## ....................................................
## Iteration 39 2019-11-24 19:54:45
## E Step
## M Step Intercepts |----------
## Deviance = 274573.1099 | Absolute change: 46.8449 | Relative change: 0.00017061
## Maximum item intercept parameter change: 0.005374
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002717
## ....................................................
## Iteration 40 2019-11-24 19:54:45
## E Step
## M Step Intercepts |----------
## Deviance = 274527.5443 | Absolute change: 45.5656 | Relative change: 0.00016598
## Maximum item intercept parameter change: 0.005265
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002578
## ....................................................
## Iteration 41 2019-11-24 19:54:45
## E Step
## M Step Intercepts |----------
## Deviance = 274482.6545 | Absolute change: 44.8898 | Relative change: 0.00016354
## Maximum item intercept parameter change: 0.007297
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002479
## ....................................................
## Iteration 42 2019-11-24 19:54:46
## E Step
## M Step Intercepts |----------
## Deviance = 274438.6708 | Absolute change: 43.9837 | Relative change: 0.00016027
## Maximum item intercept parameter change: 0.005089
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002501
## ....................................................
## Iteration 43 2019-11-24 19:54:46
## E Step
## M Step Intercepts |----------
## Deviance = 274395.5659 | Absolute change: 43.105 | Relative change: 0.00015709
## Maximum item intercept parameter change: 0.157599
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002456
## ....................................................
## Iteration 44 2019-11-24 19:54:47
## E Step
## M Step Intercepts |----------
## Deviance = 274304.6566 | Absolute change: 90.9092 | Relative change: 0.00033142
## Maximum item intercept parameter change: 0.110858
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.007149
## ....................................................
## Iteration 45 2019-11-24 19:54:47
## E Step
## M Step Intercepts |----------
## Deviance = 274206.5682 | Absolute change: 98.0884 | Relative change: 0.00035772
## Maximum item intercept parameter change: 0.054907
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.010924
## ....................................................
## Iteration 46 2019-11-24 19:54:48
## E Step
## M Step Intercepts |----------
## Deviance = 274152.6305 | Absolute change: 53.9377 | Relative change: 0.00019674
## Maximum item intercept parameter change: 0.092672
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.009181
## ....................................................
## Iteration 47 2019-11-24 19:54:48
## E Step
## M Step Intercepts |----------
## Deviance = 274085.6469 | Absolute change: 66.9836 | Relative change: 0.00024439
## Maximum item intercept parameter change: 0.041817
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.008679
## ....................................................
## Iteration 48 2019-11-24 19:54:48
## E Step
## M Step Intercepts |----------
## Deviance = 274044.0158 | Absolute change: 41.6312 | Relative change: 0.00015191
## Maximum item intercept parameter change: 0.020553
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.006875
## ....................................................
## Iteration 49 2019-11-24 19:54:49
## E Step
## M Step Intercepts |----------
## Deviance = 274011.2522 | Absolute change: 32.7636 | Relative change: 0.00011957
## Maximum item intercept parameter change: 0.04515
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.004985
## ....................................................
## Iteration 50 2019-11-24 19:54:49
## E Step
## M Step Intercepts |----------
## Deviance = 273977.6394 | Absolute change: 33.6129 | Relative change: 0.00012268
## Maximum item intercept parameter change: 0.025479
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.004869
## ....................................................
## Iteration 51 2019-11-24 19:54:50
## E Step
## M Step Intercepts |----------
## Deviance = 273946.3398 | Absolute change: 31.2996 | Relative change: 0.00011425
## Maximum item intercept parameter change: 0.003248
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003793
## ....................................................
## Iteration 52 2019-11-24 19:54:50
## E Step
## M Step Intercepts |----------
## Deviance = 273918.5308 | Absolute change: 27.809 | Relative change: 0.00010152
## Maximum item intercept parameter change: 0.029968
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.0029
## ....................................................
## Iteration 53 2019-11-24 19:54:51
## E Step
## M Step Intercepts |----------
## Deviance = 273889.5263 | Absolute change: 29.0045 | Relative change: 0.0001059
## Maximum item intercept parameter change: 0.003132
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.003192
## ....................................................
## Iteration 54 2019-11-24 19:54:51
## E Step
## M Step Intercepts |----------
## Deviance = 273862.9266 | Absolute change: 26.5997 | Relative change: 9.713e-05
## Maximum item intercept parameter change: 0.002892
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002536
## ....................................................
## Iteration 55 2019-11-24 19:54:51
## E Step
## M Step Intercepts |----------
## Deviance = 273837.3731 | Absolute change: 25.5535 | Relative change: 9.332e-05
## Maximum item intercept parameter change: 0.002883
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002113
## ....................................................
## Iteration 56 2019-11-24 19:54:52
## E Step
## M Step Intercepts |----------
## Deviance = 273812.394 | Absolute change: 24.9791 | Relative change: 9.123e-05
## Maximum item intercept parameter change: 0.015012
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001825
## ....................................................
## Iteration 57 2019-11-24 19:54:52
## E Step
## M Step Intercepts |----------
## Deviance = 273787.1656 | Absolute change: 25.2284 | Relative change: 9.215e-05
## Maximum item intercept parameter change: 0.019153
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001774
## ....................................................
## Iteration 58 2019-11-24 19:54:53
## E Step
## M Step Intercepts |----------
## Deviance = 273761.5669 | Absolute change: 25.5988 | Relative change: 9.351e-05
## Maximum item intercept parameter change: 0.002604
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002029
## ....................................................
## Iteration 59 2019-11-24 19:54:53
## E Step
## M Step Intercepts |----------
## Deviance = 273737.8112 | Absolute change: 23.7557 | Relative change: 8.678e-05
## Maximum item intercept parameter change: 0.002597
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.0017
## ....................................................
## Iteration 60 2019-11-24 19:54:53
## E Step
## M Step Intercepts |----------
## Deviance = 273714.5897 | Absolute change: 23.2215 | Relative change: 8.484e-05
## Maximum item intercept parameter change: 0.003064
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001495
## ....................................................
## Iteration 61 2019-11-24 19:54:54
## E Step
## M Step Intercepts |----------
## Deviance = 273691.1336 | Absolute change: 23.4561 | Relative change: 8.57e-05
## Maximum item intercept parameter change: 0.00336
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001376
## ....................................................
## Iteration 62 2019-11-24 19:54:54
## E Step
## M Step Intercepts |----------
## Deviance = 273668.8759 | Absolute change: 22.2577 | Relative change: 8.133e-05
## Maximum item intercept parameter change: 0.00298
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001314
## ....................................................
## Iteration 63 2019-11-24 19:54:55
## E Step
## M Step Intercepts |----------
## Deviance = 273647.0175 | Absolute change: 21.8584 | Relative change: 7.988e-05
## Maximum item intercept parameter change: 0.017886
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001247
## ....................................................
## Iteration 64 2019-11-24 19:54:55
## E Step
## M Step Intercepts |----------
## Deviance = 273625.0431 | Absolute change: 21.9744 | Relative change: 8.031e-05
## Maximum item intercept parameter change: 0.002303
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001283
## ....................................................
## Iteration 65 2019-11-24 19:54:56
## E Step
## M Step Intercepts |----------
## Deviance = 273604.523 | Absolute change: 20.5201 | Relative change: 7.5e-05
## Maximum item intercept parameter change: 0.002238
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001186
## ....................................................
## Iteration 66 2019-11-24 19:54:56
## E Step
## M Step Intercepts |----------
## Deviance = 273584.4123 | Absolute change: 20.1107 | Relative change: 7.351e-05
## Maximum item intercept parameter change: 0.002315
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001134
## ....................................................
## Iteration 67 2019-11-24 19:54:56
## E Step
## M Step Intercepts |----------
## Deviance = 273564.6645 | Absolute change: 19.7479 | Relative change: 7.219e-05
## Maximum item intercept parameter change: 0.002256
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00111
## ....................................................
## Iteration 68 2019-11-24 19:54:57
## E Step
## M Step Intercepts |----------
## Deviance = 273546.0827 | Absolute change: 18.5817 | Relative change: 6.793e-05
## Maximum item intercept parameter change: 0.0022
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001078
## ....................................................
## Iteration 69 2019-11-24 19:54:57
## E Step
## M Step Intercepts |----------
## Deviance = 273527.9682 | Absolute change: 18.1145 | Relative change: 6.623e-05
## Maximum item intercept parameter change: 0.012756
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001056
## ....................................................
## Iteration 70 2019-11-24 19:54:58
## E Step
## M Step Intercepts |----------
## Deviance = 273509.6287 | Absolute change: 18.3395 | Relative change: 6.705e-05
## Maximum item intercept parameter change: 0.019525
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001164
## ....................................................
## Iteration 71 2019-11-24 19:54:58
## E Step
## M Step Intercepts |----------
## Deviance = 273490.778 | Absolute change: 18.8507 | Relative change: 6.893e-05
## Maximum item intercept parameter change: 0.002083
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001213
## ....................................................
## Iteration 72 2019-11-24 19:54:59
## E Step
## M Step Intercepts |----------
## Deviance = 273473.3093 | Absolute change: 17.4687 | Relative change: 6.388e-05
## Maximum item intercept parameter change: 0.002605
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001086
## ....................................................
## Iteration 73 2019-11-24 19:54:59
## E Step
## M Step Intercepts |----------
## Deviance = 273456.1325 | Absolute change: 17.1768 | Relative change: 6.281e-05
## Maximum item intercept parameter change: 0.026258
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001037
## ....................................................
## Iteration 74 2019-11-24 19:55:00
## E Step
## M Step Intercepts |----------
## Deviance = 273437.2571 | Absolute change: 18.8754 | Relative change: 6.903e-05
## Maximum item intercept parameter change: 0.002477
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.002073
## ....................................................
## Iteration 75 2019-11-24 19:55:00
## E Step
## M Step Intercepts |----------
## Deviance = 273421.3824 | Absolute change: 15.8747 | Relative change: 5.806e-05
## Maximum item intercept parameter change: 0.018861
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001628
## ....................................................
## Iteration 76 2019-11-24 19:55:00
## E Step
## M Step Intercepts |----------
## Deviance = 273404.4328 | Absolute change: 16.9496 | Relative change: 6.199e-05
## Maximum item intercept parameter change: 0.0043
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001448
## ....................................................
## Iteration 77 2019-11-24 19:55:01
## E Step
## M Step Intercepts |----------
## Deviance = 273389.4974 | Absolute change: 14.9354 | Relative change: 5.463e-05
## Maximum item intercept parameter change: 0.002327
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001256
## ....................................................
## Iteration 78 2019-11-24 19:55:01
## E Step
## M Step Intercepts |----------
## Deviance = 273375.2913 | Absolute change: 14.2061 | Relative change: 5.197e-05
## Maximum item intercept parameter change: 0.002268
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001081
## ....................................................
## Iteration 79 2019-11-24 19:55:02
## E Step
## M Step Intercepts |----------
## Deviance = 273361.2762 | Absolute change: 14.0151 | Relative change: 5.127e-05
## Maximum item intercept parameter change: 0.007772
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000977
## ....................................................
## Iteration 80 2019-11-24 19:55:02
## E Step
## M Step Intercepts |----------
## Deviance = 273347.5003 | Absolute change: 13.7759 | Relative change: 5.04e-05
## Maximum item intercept parameter change: 0.009703
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000976
## ....................................................
## Iteration 81 2019-11-24 19:55:03
## E Step
## M Step Intercepts |----------
## Deviance = 273333.9734 | Absolute change: 13.527 | Relative change: 4.949e-05
## Maximum item intercept parameter change: 0.002161
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000987
## ....................................................
## Iteration 82 2019-11-24 19:55:03
## E Step
## M Step Intercepts |----------
## Deviance = 273321.3129 | Absolute change: 12.6605 | Relative change: 4.632e-05
## Maximum item intercept parameter change: 0.002108
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000864
## ....................................................
## Iteration 83 2019-11-24 19:55:03
## E Step
## M Step Intercepts |----------
## Deviance = 273308.763 | Absolute change: 12.5499 | Relative change: 4.592e-05
## Maximum item intercept parameter change: 0.012246
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000801
## ....................................................
## Iteration 84 2019-11-24 19:55:04
## E Step
## M Step Intercepts |----------
## Deviance = 273295.9994 | Absolute change: 12.7636 | Relative change: 4.67e-05
## Maximum item intercept parameter change: 0.002539
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00106
## ....................................................
## Iteration 85 2019-11-24 19:55:04
## E Step
## M Step Intercepts |----------
## Deviance = 273283.9819 | Absolute change: 12.0175 | Relative change: 4.397e-05
## Maximum item intercept parameter change: 0.009557
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000935
## ....................................................
## Iteration 86 2019-11-24 19:55:04
## E Step
## M Step Intercepts |----------
## Deviance = 273272.1339 | Absolute change: 11.848 | Relative change: 4.336e-05
## Maximum item intercept parameter change: 0.001898
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000931
## ....................................................
## Iteration 87 2019-11-24 19:55:05
## E Step
## M Step Intercepts |----------
## Deviance = 273260.7578 | Absolute change: 11.3761 | Relative change: 4.163e-05
## Maximum item intercept parameter change: 0.013632
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00082
## ....................................................
## Iteration 88 2019-11-24 19:55:05
## E Step
## M Step Intercepts |----------
## Deviance = 273249.0331 | Absolute change: 11.7247 | Relative change: 4.291e-05
## Maximum item intercept parameter change: 0.001669
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000815
## ....................................................
## Iteration 89 2019-11-24 19:55:06
## E Step
## M Step Intercepts |----------
## Deviance = 273238.3729 | Absolute change: 10.6602 | Relative change: 3.901e-05
## Maximum item intercept parameter change: 0.004572
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000727
## ....................................................
## Iteration 90 2019-11-24 19:55:06
## E Step
## M Step Intercepts |----------
## Deviance = 273228.29 | Absolute change: 10.0829 | Relative change: 3.69e-05
## Maximum item intercept parameter change: 0.00158
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000713
## ....................................................
## Iteration 91 2019-11-24 19:55:06
## E Step
## M Step Intercepts |----------
## Deviance = 273218.3995 | Absolute change: 9.8905 | Relative change: 3.62e-05
## Maximum item intercept parameter change: 0.00154
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000658
## ....................................................
## Iteration 92 2019-11-24 19:55:07
## E Step
## M Step Intercepts |----------
## Deviance = 273208.648 | Absolute change: 9.7515 | Relative change: 3.569e-05
## Maximum item intercept parameter change: 0.001501
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.00063
## ....................................................
## Iteration 93 2019-11-24 19:55:07
## E Step
## M Step Intercepts |----------
## Deviance = 273199.1509 | Absolute change: 9.4971 | Relative change: 3.476e-05
## Maximum item intercept parameter change: 0.018367
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000612
## ....................................................
## Iteration 94 2019-11-24 19:55:08
## E Step
## M Step Intercepts |----------
## Deviance = 273188.8333 | Absolute change: 10.3176 | Relative change: 3.777e-05
## Maximum item intercept parameter change: 0.009672
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001133
## ....................................................
## Iteration 95 2019-11-24 19:55:08
## E Step
## M Step Intercepts |----------
## Deviance = 273179.4086 | Absolute change: 9.4247 | Relative change: 3.45e-05
## Maximum item intercept parameter change: 0.002664
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.001211
## ....................................................
## Iteration 96 2019-11-24 19:55:09
## E Step
## M Step Intercepts |----------
## Deviance = 273170.51 | Absolute change: 8.8986 | Relative change: 3.258e-05
## Maximum item intercept parameter change: 0.001586
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000939
## ....................................................
## Iteration 97 2019-11-24 19:55:09
## E Step
## M Step Intercepts |----------
## Deviance = 273162.0729 | Absolute change: 8.4371 | Relative change: 3.089e-05
## Maximum item intercept parameter change: 0.012923
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000772
## ....................................................
## Iteration 98 2019-11-24 19:55:09
## E Step
## M Step Intercepts |----------
## Deviance = 273153.2644 | Absolute change: 8.8085 | Relative change: 3.225e-05
## Maximum item intercept parameter change: 0.010216
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000727
## ....................................................
## Iteration 99 2019-11-24 19:55:10
## E Step
## M Step Intercepts |----------
## Deviance = 273144.9995 | Absolute change: 8.265 | Relative change: 3.026e-05
## Maximum item intercept parameter change: 0.00242
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000857
## ....................................................
## Iteration 100 2019-11-24 19:55:10
## E Step
## M Step Intercepts |----------
## Deviance = 273137.2239 | Absolute change: 7.7755 | Relative change: 2.847e-05
## Maximum item intercept parameter change: 0.006985
## Maximum item slope parameter change: 0
## Maximum regression parameter change: 0
## Maximum variance parameter change: 0.000712
## ....................................................
## Item Parameters
## xsi.index xsi.label est
## 1 1 i67.E.Soc.00_Cat1 -1.1953
## 2 2 i67.E.Soc.00_Cat2 -0.8648
## 3 3 i67.E.Soc.00_Cat3 0.1079
## 4 4 i67.E.Soc.00_Cat4 1.2316
## 5 5 i73.E.Soc.00_Cat1 -2.1330
## 6 6 i73.E.Soc.00_Cat2 -1.4287
## 7 7 i73.E.Soc.00_Cat3 -0.2564
## 8 8 i73.E.Soc.00_Cat4 0.3619
## 9 9 i55.E.Act.10_Cat1 -3.1093
## 10 10 i55.E.Act.10_Cat2 -1.7121
## 11 11 i55.E.Act.10_Cat3 -0.6977
## 12 12 i55.E.Act.10_Cat4 -0.1291
## 13 13 i63.E.Act.10_Cat1 -2.8393
## 14 14 i63.E.Act.10_Cat2 -1.1739
## 15 15 i63.E.Act.10_Cat3 -0.4833
## 16 16 i63.E.Act.10_Cat4 0.4741
## 17 17 i76.E.Act.10_Cat1 -1.4576
## 18 18 i76.E.Act.10_Cat2 -0.5374
## 19 19 i76.E.Act.10_Cat3 0.2006
## 20 20 i76.E.Act.10_Cat4 1.3333
## 21 21 i71.E.Soc.10_Cat1 -3.0011
## 22 22 i71.E.Soc.10_Cat2 -1.4333
## 23 23 i71.E.Soc.10_Cat3 -0.6600
## 24 24 i71.E.Soc.10_Cat4 0.1831
## 25 25 i75.E.Soc.10_Cat1 -2.5804
## 26 26 i75.E.Soc.10_Cat2 -1.2869
## 27 27 i75.E.Soc.10_Cat3 -0.6116
## 28 28 i75.E.Soc.10_Cat4 0.4060
## 29 29 i84.E.Soc.11_Cat1 -3.1189
## 30 30 i84.E.Soc.11_Cat2 -1.6175
## 31 31 i84.E.Soc.11_Cat3 -0.7829
## 32 32 i84.E.Soc.11_Cat4 0.7072
## 33 33 i87.E.Soc.11_Cat1 -0.8253
## 34 34 i87.E.Soc.11_Cat2 -0.0824
## 35 35 i87.E.Soc.11_Cat3 0.9435
## 36 36 i87.E.Soc.11_Cat4 2.2619
## ...................................
## Regression Coefficients
## V1 V2
## [1,] 0 0
##
## Variance:
## [,1] [,2]
## [1,] 0.6084 -0.1231
## [2,] -0.1231 0.2943
##
## Correlation Matrix:
## [,1] [,2]
## [1,] 1.000 -0.291
## [2,] -0.291 1.000
##
##
## EAP Reliability:
## Dim1 Dim2
## 0.743 0.571
##
## -----------------------------
## Start: 2019-11-24 19:54:26
## End: 2019-11-24 19:55:11
## Time difference of 45.24235 secs
summary(fit2)
## ------------------------------------------------------------
## TAM 3.1-45 (2019-03-18 16:53:26)
## R version 3.5.1 (2018-07-02) x86_64, darwin15.6.0 | nodename=MacBookPro2018.local | login=rprimi
##
## Date of Analysis: 2019-11-24 19:55:11
## Time difference of 45.24235 secs
## Computation time: 45.24235
##
## Multidimensional Item Response Model in TAM
##
## IRT Model: PCM
## Call:
## tam.mml(resp = dt, irtmodel = "PCM", B = B, control = list(maxiter = 100,
## increment.factor = 1.03, fac.oldxsi = 0.4, Msteps = 10))
##
## ------------------------------------------------------------
## Number of iterations = 100
## Numeric integration with 441 integration points
##
## Deviance = 273137.2
## Log likelihood = -136568.6
## Number of persons = 10866
## Number of persons used = 10866
## Number of items = 9
## Number of estimated parameters = 39
## Item threshold parameters = 36
## Item slope parameters = 0
## Regression parameters = 0
## Variance/covariance parameters = 3
##
## AIC = 273215 | penalty = 78 | AIC=-2*LL + 2*p
## AIC3 = 273254 | penalty = 117 | AIC3=-2*LL + 3*p
## BIC = 273500 | penalty = 362.44 | BIC=-2*LL + log(n)*p
## aBIC = 273376 | penalty = 238.49 | aBIC=-2*LL + log((n-2)/24)*p (adjusted BIC)
## CAIC = 273539 | penalty = 401.44 | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)
## AICc = 273216 | penalty = 78.29 | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)
##
## ------------------------------------------------------------
## EAP Reliability
## Dim1 Dim2
## 0.743 0.571
## ------------------------------------------------------------
## Covariances and Variances
## V1 V2
## V1 0.608 -0.123
## V2 -0.123 0.294
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
## V1 V2
## V1 0.780 -0.291
## V2 -0.291 0.543
## ------------------------------------------------------------
## Regression Coefficients
## V1 V2
## [1,] 0 0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
## item N M xsi.item AXsi_.Cat0 AXsi_.Cat1
## i67.E.Soc.00 i67.E.Soc.00 10626 2.199 -0.180 0 -1.195
## i73.E.Soc.00 i73.E.Soc.00 10637 2.617 -0.864 0 -2.134
## i55.E.Act.10 i55.E.Act.10 10555 2.960 -1.413 0 -3.110
## i63.E.Act.10 i63.E.Act.10 10677 2.721 -1.006 0 -2.840
## i76.E.Act.10 i76.E.Act.10 10667 2.071 -0.115 0 -1.458
## i71.E.Soc.10 i71.E.Soc.10 10648 2.827 -1.227 0 -3.002
## i75.E.Soc.10 i75.E.Soc.10 10619 2.711 -1.018 0 -2.581
## i84.E.Soc.11 i84.E.Soc.11 10690 2.771 -1.203 0 -3.120
## i87.E.Soc.11 i87.E.Soc.11 10715 1.581 0.575 0 -0.826
## AXsi_.Cat2 AXsi_.Cat3 AXsi_.Cat4 B.Cat0.Dim1 B.Cat0.Dim2
## i67.E.Soc.00 -2.060 -1.952 -0.719 0 4
## i73.E.Soc.00 -3.563 -3.820 -3.458 0 4
## i55.E.Act.10 -4.823 -5.521 -5.650 0 0
## i63.E.Act.10 -4.014 -4.497 -4.022 0 0
## i76.E.Act.10 -1.996 -1.793 -0.459 0 0
## i71.E.Soc.10 -4.436 -5.096 -4.906 0 0
## i75.E.Soc.10 -3.869 -4.480 -4.071 0 0
## i84.E.Soc.11 -4.738 -5.521 -4.813 0 0
## i87.E.Soc.11 -0.907 0.037 2.300 0 0
## B.Cat1.Dim1 B.Cat1.Dim2 B.Cat2.Dim1 B.Cat2.Dim2 B.Cat3.Dim1
## i67.E.Soc.00 1 3 2 2 3
## i73.E.Soc.00 1 3 2 2 3
## i55.E.Act.10 1 1 2 2 3
## i63.E.Act.10 1 1 2 2 3
## i76.E.Act.10 1 1 2 2 3
## i71.E.Soc.10 1 1 2 2 3
## i75.E.Soc.10 1 1 2 2 3
## i84.E.Soc.11 1 1 2 2 3
## i87.E.Soc.11 1 1 2 2 3
## B.Cat3.Dim2 B.Cat4.Dim1 B.Cat4.Dim2
## i67.E.Soc.00 1 4 0
## i73.E.Soc.00 1 4 0
## i55.E.Act.10 3 4 4
## i63.E.Act.10 3 4 4
## i76.E.Act.10 3 4 4
## i71.E.Soc.10 3 4 4
## i75.E.Soc.10 3 4 4
## i84.E.Soc.11 3 4 4
## i87.E.Soc.11 3 4 4
##
## Item Parameters Xsi
## xsi se.xsi
## i67.E.Soc.00_Cat1 -1.195 0.034
## i67.E.Soc.00_Cat2 -0.865 0.026
## i67.E.Soc.00_Cat3 0.108 0.024
## i67.E.Soc.00_Cat4 1.232 0.030
## i73.E.Soc.00_Cat1 -2.133 0.049
## i73.E.Soc.00_Cat2 -1.429 0.031
## i73.E.Soc.00_Cat3 -0.256 0.024
## i73.E.Soc.00_Cat4 0.362 0.025
## i55.E.Act.10_Cat1 -3.109 0.098
## i55.E.Act.10_Cat2 -1.712 0.038
## i55.E.Act.10_Cat3 -0.698 0.024
## i55.E.Act.10_Cat4 -0.129 0.022
## i63.E.Act.10_Cat1 -2.839 0.071
## i63.E.Act.10_Cat2 -1.174 0.030
## i63.E.Act.10_Cat3 -0.483 0.023
## i63.E.Act.10_Cat4 0.474 0.024
## i76.E.Act.10_Cat1 -1.458 0.035
## i76.E.Act.10_Cat2 -0.537 0.024
## i76.E.Act.10_Cat3 0.201 0.023
## i76.E.Act.10_Cat4 1.333 0.033
## i71.E.Soc.10_Cat1 -3.001 0.085
## i71.E.Soc.10_Cat2 -1.433 0.034
## i71.E.Soc.10_Cat3 -0.660 0.024
## i71.E.Soc.10_Cat4 0.183 0.023
## i75.E.Soc.10_Cat1 -2.580 0.067
## i75.E.Soc.10_Cat2 -1.287 0.032
## i75.E.Soc.10_Cat3 -0.612 0.023
## i75.E.Soc.10_Cat4 0.406 0.024
## i84.E.Soc.11_Cat1 -3.119 0.093
## i84.E.Soc.11_Cat2 -1.617 0.035
## i84.E.Soc.11_Cat3 -0.783 0.023
## i84.E.Soc.11_Cat4 0.707 0.024
## i87.E.Soc.11_Cat1 -0.825 0.026
## i87.E.Soc.11_Cat2 -0.082 0.022
## i87.E.Soc.11_Cat3 0.944 0.027
## i87.E.Soc.11_Cat4 2.262 0.054
tam.threshold(fit2)
## Cat1 Cat2 Cat3 Cat4
## i67.E.Soc.00 -1.633392 -0.75759888 0.1758728 1.4784851
## i73.E.Soc.00 -2.466339 -1.37173462 -0.3326111 0.7160339
## i55.E.Act.10 -3.306976 -1.80368042 -0.7671204 0.2414246
## i63.E.Act.10 -3.000092 -1.36166382 -0.4153748 0.7601624
## i76.E.Act.10 -1.751129 -0.59921265 0.3040466 1.5823059
## i71.E.Soc.10 -3.174957 -1.59292603 -0.6290588 0.4928284
## i75.E.Soc.10 -2.800140 -1.42684937 -0.5224915 0.6797791
## i84.E.Soc.11 -3.301849 -1.74105835 -0.6611023 0.8918152
## i87.E.Soc.11 -1.152191 -0.04696655 1.0168762 2.4723816
tam.threshold(fit1)
## Cat1 Cat2 Cat3 Cat4
## i67.E.Soc.00 -1.0970764 -0.477996826 0.1181946 0.9559021
## i73.E.Soc.00 -1.3902283 -0.824249268 -0.1868591 0.5393372
## i55.E.Act.10 -1.9666443 -1.146881104 -0.5241394 0.2577209
## i63.E.Act.10 -1.8910217 -0.993072510 -0.2850037 0.5642395
## i76.E.Act.10 -1.1446838 -0.402374268 0.2666931 1.0998230
## i71.E.Soc.10 -1.9851379 -1.013397217 -0.4281921 0.4706726
## i75.E.Soc.10 -1.6989441 -0.910308838 -0.3509216 0.6321716
## i84.E.Soc.11 -2.0232239 -1.136077881 -0.4677429 0.8275452
## i87.E.Soc.11 -0.9024353 0.003570557 0.7480774 1.6216736
library(scales)
scores <- tibble(
trait_e_orig = fit1$person$EAP,
trait_e_rec =fit2$person$EAP.Dim1,
acq_e = fit2$person$EAP.Dim2
)
sennav1 <- bind_cols(sennav1, scores)
names(sennav1)
## [1] "i03.NV.NV.10" "i04.A.Cmp.10" "i05.O.Img.10"
## [4] "i06.C.Ord.10" "i07.N.Vol.00" "i09.A.Cmp.10"
## [7] "i10.O.Img.10" "i11.C.Ord.10" "i12.N.Vol.00"
## [10] "i13.NV.NV.10" "i14.A.Tru.10" "i17.N.Anx.00"
## [13] "i24.O.Aes.10" "i25.A.Cmp.10" "i27.N.Dep.00"
## [16] "i29.A.Cmp.10" "i30.O.Int.10" "i32.N.Vol.00"
## [19] "i33.NV.NV.10" "i34.A.Tru.10" "i36.C.Conc.00"
## [22] "i37.N.Anx.10" "i39.A.Cmp.10" "i40.O.Aes.10"
## [25] "i42.N.Anx.00" "i44.A.Pol.00" "i46.C.Conc.00"
## [28] "i48.NV.NV.10" "i49.A.Cmp.10" "i51.C.Ord.00"
## [31] "i52.NV.NV.10" "i53.A.Pol.00" "i54.O.Int.10"
## [34] "i55.E.Act.10" "i56.NV.NV.10" "i60.NV.NV.00"
## [37] "i63.E.Act.10" "i66.O.Int.10" "i67.E.Soc.00"
## [40] "i70.O.Img.11" "i71.E.Soc.10" "i73.E.Soc.00"
## [43] "i74.NV.NV.10" "i75.E.Soc.10" "i76.E.Act.10"
## [46] "i77.C.SD.11" "i79.N.Vol.11" "i82.N.Vol.11"
## [49] "i83.C.Conc.11" "i84.E.Soc.11" "i87.E.Soc.11"
## [52] "i88.N.Dep.11" "i89.C.Achv.11" "i91.C.SD.11"
## [55] "missR" "admiss_missR" "acq_avr"
## [58] "acq_sd" "num_items" "Caderno"
## [61] "age2" "grade" "atrasado"
## [64] "atrasado2" "VL_PROFICIENCIA_LP" "VL_PROFICIENCIA_MT"
## [67] "vign_consist" "vign_consist_count" "F1.Cons"
## [70] "F2.Extr" "F3.EmSt" "F4.Agre"
## [73] "F5.Opns" "F6.NVLoc" "gender"
## [76] "rwn_id" "NM_REGIONAL_ESCOLA" "grade2"
## [79] "grade_5" "grade_9" "grade_10"
## [82] "freq" "cd_esc_grade" "rwn_id2"
## [85] "VL_PROFICIENCIA_LP_r" "VL_PROFICIENCIA_MT_r" "senna_it_rspnd"
## [88] "trait_e_orig" "trait_e_rec" "acq_e"
sennav1 %>% ggplot(aes(x=trait_e_orig )) +
geom_histogram(color="white", fill="orange", alpha = .5) +
scale_x_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
theme_minimal()
sennav1 %>% ggplot(aes(x= trait_e_rec )) +
geom_histogram(color="white", fill="orange", alpha = .5) +
scale_x_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
theme_minimal()
sennav1 %>% ggplot(aes(x= acq_e )) +
geom_histogram(color="white", fill="orange", alpha = .5) +
scale_x_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
theme_minimal()
sennav1 %>% ggplot(aes(x= trait_e_orig, y = trait_e_rec)) +
geom_point(color="blue", fill="white", alpha = .5) +
scale_x_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
scale_y_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
theme_minimal()
sennav1 %>% ggplot(aes(x= trait_e_orig, y = trait_e_rec)) +
geom_point(color="blue", alpha = .5) +
scale_x_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
scale_y_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
theme_minimal()
sennav1 %>% ggplot(aes(x= acq_e, y = trait_e_rec)) +
geom_point(color="blue", alpha = .5) +
scale_x_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
scale_y_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
theme_minimal()
names(sennav1)
## [1] "i03.NV.NV.10" "i04.A.Cmp.10" "i05.O.Img.10"
## [4] "i06.C.Ord.10" "i07.N.Vol.00" "i09.A.Cmp.10"
## [7] "i10.O.Img.10" "i11.C.Ord.10" "i12.N.Vol.00"
## [10] "i13.NV.NV.10" "i14.A.Tru.10" "i17.N.Anx.00"
## [13] "i24.O.Aes.10" "i25.A.Cmp.10" "i27.N.Dep.00"
## [16] "i29.A.Cmp.10" "i30.O.Int.10" "i32.N.Vol.00"
## [19] "i33.NV.NV.10" "i34.A.Tru.10" "i36.C.Conc.00"
## [22] "i37.N.Anx.10" "i39.A.Cmp.10" "i40.O.Aes.10"
## [25] "i42.N.Anx.00" "i44.A.Pol.00" "i46.C.Conc.00"
## [28] "i48.NV.NV.10" "i49.A.Cmp.10" "i51.C.Ord.00"
## [31] "i52.NV.NV.10" "i53.A.Pol.00" "i54.O.Int.10"
## [34] "i55.E.Act.10" "i56.NV.NV.10" "i60.NV.NV.00"
## [37] "i63.E.Act.10" "i66.O.Int.10" "i67.E.Soc.00"
## [40] "i70.O.Img.11" "i71.E.Soc.10" "i73.E.Soc.00"
## [43] "i74.NV.NV.10" "i75.E.Soc.10" "i76.E.Act.10"
## [46] "i77.C.SD.11" "i79.N.Vol.11" "i82.N.Vol.11"
## [49] "i83.C.Conc.11" "i84.E.Soc.11" "i87.E.Soc.11"
## [52] "i88.N.Dep.11" "i89.C.Achv.11" "i91.C.SD.11"
## [55] "missR" "admiss_missR" "acq_avr"
## [58] "acq_sd" "num_items" "Caderno"
## [61] "age2" "grade" "atrasado"
## [64] "atrasado2" "VL_PROFICIENCIA_LP" "VL_PROFICIENCIA_MT"
## [67] "vign_consist" "vign_consist_count" "F1.Cons"
## [70] "F2.Extr" "F3.EmSt" "F4.Agre"
## [73] "F5.Opns" "F6.NVLoc" "gender"
## [76] "rwn_id" "NM_REGIONAL_ESCOLA" "grade2"
## [79] "grade_5" "grade_9" "grade_10"
## [82] "freq" "cd_esc_grade" "rwn_id2"
## [85] "VL_PROFICIENCIA_LP_r" "VL_PROFICIENCIA_MT_r" "senna_it_rspnd"
## [88] "trait_e_orig" "trait_e_rec" "acq_e"
corr.test(sennav1[, c(65, 66, 88:90, 57, 67, 69:74)])
## Call:corr.test(x = sennav1[, c(65, 66, 88:90, 57, 67, 69:74)])
## Correlation matrix
## VL_PROFICIENCIA_LP VL_PROFICIENCIA_MT trait_e_orig
## VL_PROFICIENCIA_LP 1.00 0.66 0.13
## VL_PROFICIENCIA_MT 0.66 1.00 0.09
## trait_e_orig 0.13 0.09 1.00
## trait_e_rec 0.09 0.06 0.95
## acq_e 0.11 0.08 0.10
## acq_avr 0.05 0.05 0.25
## vign_consist 0.39 0.32 0.16
## F1.Cons 0.15 0.19 0.10
## F2.Extr 0.13 0.09 1.00
## F3.EmSt 0.10 0.13 0.19
## F4.Agre 0.18 0.13 0.38
## F5.Opns 0.18 0.15 0.41
## F6.NVLoc -0.23 -0.20 -0.11
## trait_e_rec acq_e acq_avr vign_consist F1.Cons F2.Extr
## VL_PROFICIENCIA_LP 0.09 0.11 0.05 0.39 0.15 0.13
## VL_PROFICIENCIA_MT 0.06 0.08 0.05 0.32 0.19 0.09
## trait_e_orig 0.95 0.10 0.25 0.16 0.10 1.00
## trait_e_rec 1.00 -0.21 0.10 0.12 0.07 0.95
## acq_e -0.21 1.00 0.50 0.10 0.08 0.10
## acq_avr 0.10 0.50 1.00 0.08 0.08 0.26
## vign_consist 0.12 0.10 0.08 1.00 0.09 0.16
## F1.Cons 0.07 0.08 0.08 0.09 1.00 0.10
## F2.Extr 0.95 0.10 0.26 0.16 0.10 1.00
## F3.EmSt 0.19 -0.03 -0.13 0.08 0.38 0.19
## F4.Agre 0.28 0.30 0.32 0.20 0.37 0.38
## F5.Opns 0.30 0.33 0.48 0.13 0.34 0.41
## F6.NVLoc -0.15 0.12 0.29 -0.17 -0.31 -0.11
## F3.EmSt F4.Agre F5.Opns F6.NVLoc
## VL_PROFICIENCIA_LP 0.10 0.18 0.18 -0.23
## VL_PROFICIENCIA_MT 0.13 0.13 0.15 -0.20
## trait_e_orig 0.19 0.38 0.41 -0.11
## trait_e_rec 0.19 0.28 0.30 -0.15
## acq_e -0.03 0.30 0.33 0.12
## acq_avr -0.13 0.32 0.48 0.29
## vign_consist 0.08 0.20 0.13 -0.17
## F1.Cons 0.38 0.37 0.34 -0.31
## F2.Extr 0.19 0.38 0.41 -0.11
## F3.EmSt 1.00 0.30 0.15 -0.37
## F4.Agre 0.30 1.00 0.41 -0.14
## F5.Opns 0.15 0.41 1.00 -0.04
## F6.NVLoc -0.37 -0.14 -0.04 1.00
## Sample Size
## VL_PROFICIENCIA_LP VL_PROFICIENCIA_MT trait_e_orig
## VL_PROFICIENCIA_LP 10123 10123 10123
## VL_PROFICIENCIA_MT 10123 10123 10123
## trait_e_orig 10123 10123 10866
## trait_e_rec 10123 10123 10866
## acq_e 10123 10123 10866
## acq_avr 10123 10123 10866
## vign_consist 10090 10090 10830
## F1.Cons 10123 10123 10866
## F2.Extr 10123 10123 10866
## F3.EmSt 10123 10123 10866
## F4.Agre 10123 10123 10866
## F5.Opns 10123 10123 10866
## F6.NVLoc 10123 10123 10866
## trait_e_rec acq_e acq_avr vign_consist F1.Cons F2.Extr
## VL_PROFICIENCIA_LP 10123 10123 10123 10090 10123 10123
## VL_PROFICIENCIA_MT 10123 10123 10123 10090 10123 10123
## trait_e_orig 10866 10866 10866 10830 10866 10866
## trait_e_rec 10866 10866 10866 10830 10866 10866
## acq_e 10866 10866 10866 10830 10866 10866
## acq_avr 10866 10866 10866 10830 10866 10866
## vign_consist 10830 10830 10830 10830 10830 10830
## F1.Cons 10866 10866 10866 10830 10866 10866
## F2.Extr 10866 10866 10866 10830 10866 10866
## F3.EmSt 10866 10866 10866 10830 10866 10866
## F4.Agre 10866 10866 10866 10830 10866 10866
## F5.Opns 10866 10866 10866 10830 10866 10866
## F6.NVLoc 10866 10866 10866 10830 10866 10866
## F3.EmSt F4.Agre F5.Opns F6.NVLoc
## VL_PROFICIENCIA_LP 10123 10123 10123 10123
## VL_PROFICIENCIA_MT 10123 10123 10123 10123
## trait_e_orig 10866 10866 10866 10866
## trait_e_rec 10866 10866 10866 10866
## acq_e 10866 10866 10866 10866
## acq_avr 10866 10866 10866 10866
## vign_consist 10830 10830 10830 10830
## F1.Cons 10866 10866 10866 10866
## F2.Extr 10866 10866 10866 10866
## F3.EmSt 10866 10866 10866 10866
## F4.Agre 10866 10866 10866 10866
## F5.Opns 10866 10866 10866 10866
## F6.NVLoc 10866 10866 10866 10866
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## VL_PROFICIENCIA_LP VL_PROFICIENCIA_MT trait_e_orig
## VL_PROFICIENCIA_LP 0 0 0
## VL_PROFICIENCIA_MT 0 0 0
## trait_e_orig 0 0 0
## trait_e_rec 0 0 0
## acq_e 0 0 0
## acq_avr 0 0 0
## vign_consist 0 0 0
## F1.Cons 0 0 0
## F2.Extr 0 0 0
## F3.EmSt 0 0 0
## F4.Agre 0 0 0
## F5.Opns 0 0 0
## F6.NVLoc 0 0 0
## trait_e_rec acq_e acq_avr vign_consist F1.Cons F2.Extr
## VL_PROFICIENCIA_LP 0 0 0 0 0 0
## VL_PROFICIENCIA_MT 0 0 0 0 0 0
## trait_e_orig 0 0 0 0 0 0
## trait_e_rec 0 0 0 0 0 0
## acq_e 0 0 0 0 0 0
## acq_avr 0 0 0 0 0 0
## vign_consist 0 0 0 0 0 0
## F1.Cons 0 0 0 0 0 0
## F2.Extr 0 0 0 0 0 0
## F3.EmSt 0 0 0 0 0 0
## F4.Agre 0 0 0 0 0 0
## F5.Opns 0 0 0 0 0 0
## F6.NVLoc 0 0 0 0 0 0
## F3.EmSt F4.Agre F5.Opns F6.NVLoc
## VL_PROFICIENCIA_LP 0 0 0 0
## VL_PROFICIENCIA_MT 0 0 0 0
## trait_e_orig 0 0 0 0
## trait_e_rec 0 0 0 0
## acq_e 0 0 0 0
## acq_avr 0 0 0 0
## vign_consist 0 0 0 0
## F1.Cons 0 0 0 0
## F2.Extr 0 0 0 0
## F3.EmSt 0 0 0 0
## F4.Agre 0 0 0 0
## F5.Opns 0 0 0 0
## F6.NVLoc 0 0 0 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
parms <- dt %>%
mirt(2, itemtype = 'graded', pars = 'values',TOL = .001)
# fix loadins 1 and -1 of random intercept factors F2,
# fix est=F
# estimates variance of F2
parms[parms$name=="a2", ]$value <- c(-1,-1, 1,1,1,1,1,1,1)
parms[parms$name=="a2", ]$est <- FALSE
parms[parms$name=="a1", ]$value <- abs(parms[parms$name=="a1", ]$value)
parms[parms$name=="COV_22", ]$est <- TRUE
# calibrate item parameters
fit3 <- dt %>%
mirt(2, pars = parms,itemtype = 'graded', TOL = .001)
##
Iteration: 1, Log-Lik: -136690.972, Max-Change: 0.38926
Iteration: 2, Log-Lik: -134543.526, Max-Change: 0.21731
Iteration: 3, Log-Lik: -134090.013, Max-Change: 0.12575
Iteration: 4, Log-Lik: -133952.299, Max-Change: 0.08109
Iteration: 5, Log-Lik: -133901.585, Max-Change: 0.05446
Iteration: 6, Log-Lik: -133878.588, Max-Change: 0.03913
Iteration: 7, Log-Lik: -133865.991, Max-Change: 0.02952
Iteration: 8, Log-Lik: -133858.081, Max-Change: 0.02316
Iteration: 9, Log-Lik: -133852.686, Max-Change: 0.01886
Iteration: 10, Log-Lik: -133848.821, Max-Change: 0.01577
Iteration: 11, Log-Lik: -133845.983, Max-Change: 0.01332
Iteration: 12, Log-Lik: -133843.855, Max-Change: 0.01141
Iteration: 13, Log-Lik: -133840.753, Max-Change: 0.01130
Iteration: 14, Log-Lik: -133839.119, Max-Change: 0.00624
Iteration: 15, Log-Lik: -133838.452, Max-Change: 0.00486
Iteration: 16, Log-Lik: -133837.999, Max-Change: 0.00425
Iteration: 17, Log-Lik: -133837.701, Max-Change: 0.00328
Iteration: 18, Log-Lik: -133837.500, Max-Change: 0.00273
Iteration: 19, Log-Lik: -133837.365, Max-Change: 0.00501
Iteration: 20, Log-Lik: -133837.148, Max-Change: 0.00224
Iteration: 21, Log-Lik: -133837.077, Max-Change: 0.00179
Iteration: 22, Log-Lik: -133837.025, Max-Change: 0.00161
Iteration: 23, Log-Lik: -133836.994, Max-Change: 0.00128
Iteration: 24, Log-Lik: -133836.973, Max-Change: 0.00109
Iteration: 25, Log-Lik: -133836.958, Max-Change: 0.00198
Iteration: 26, Log-Lik: -133836.935, Max-Change: 0.00094
# examines results
summary(fit3)
## F1 F2 h2
## i67.E.Soc.00 0.531 -0.293 0.368
## i73.E.Soc.00 0.504 -0.299 0.344
## i55.E.Act.10 0.664 0.259 0.508
## i63.E.Act.10 0.451 0.309 0.299
## i76.E.Act.10 0.409 0.316 0.267
## i71.E.Soc.10 0.580 0.282 0.416
## i75.E.Soc.10 0.438 0.311 0.288
## i84.E.Soc.11 0.365 0.322 0.237
## i87.E.Soc.11 0.221 0.338 0.163
##
## SS loadings: 2.059 0.831
## Proportion Var: 0.229 0.092
##
## Factor correlations:
##
## F1 F2
## F1 1 0
## F2 0 1
coef(fit3 , simplify=TRUE, irt.parms = TRUE)
## $items
## a1 a2 d1 d2 d3 d4
## i67.E.Soc.00 1.237 -1 2.459 1.167 -0.279 -1.933
## i73.E.Soc.00 1.153 -1 3.166 1.960 0.397 -1.089
## i55.E.Act.10 1.755 1 4.980 3.097 1.307 -0.623
## i63.E.Act.10 0.998 1 3.804 2.113 0.567 -1.028
## i76.E.Act.10 0.885 1 2.241 0.895 -0.530 -2.045
## i71.E.Soc.10 1.407 1 4.401 2.468 0.978 -0.952
## i75.E.Soc.10 0.961 1 3.539 2.023 0.705 -1.117
## i84.E.Soc.11 0.773 1 4.002 2.303 0.836 -1.279
## i87.E.Soc.11 0.448 1 1.483 0.041 -1.364 -2.857
##
## $means
## F1 F2
## 0 0
##
## $cov
## F1 F2
## F1 1 NA
## F2 0 0.467
scores2 <- fscores(fit3)
sennav1 <- bind_cols(sennav1, as.data.frame(scores2))
corr.test(sennav1[, c(65, 66, 88:90, 57, 67, 69:74, 91:92)])
## Call:corr.test(x = sennav1[, c(65, 66, 88:90, 57, 67, 69:74, 91:92)])
## Correlation matrix
## VL_PROFICIENCIA_LP VL_PROFICIENCIA_MT trait_e_orig
## VL_PROFICIENCIA_LP 1.00 0.66 0.13
## VL_PROFICIENCIA_MT 0.66 1.00 0.09
## trait_e_orig 0.13 0.09 1.00
## trait_e_rec 0.09 0.06 0.95
## acq_e 0.11 0.08 0.10
## acq_avr 0.05 0.05 0.25
## vign_consist 0.39 0.32 0.16
## F1.Cons 0.15 0.19 0.10
## F2.Extr 0.13 0.09 1.00
## F3.EmSt 0.10 0.13 0.19
## F4.Agre 0.18 0.13 0.38
## F5.Opns 0.18 0.15 0.41
## F6.NVLoc -0.23 -0.20 -0.11
## F1 0.05 0.02 0.95
## F2 0.14 0.10 0.39
## trait_e_rec acq_e acq_avr vign_consist F1.Cons F2.Extr
## VL_PROFICIENCIA_LP 0.09 0.11 0.05 0.39 0.15 0.13
## VL_PROFICIENCIA_MT 0.06 0.08 0.05 0.32 0.19 0.09
## trait_e_orig 0.95 0.10 0.25 0.16 0.10 1.00
## trait_e_rec 1.00 -0.21 0.10 0.12 0.07 0.95
## acq_e -0.21 1.00 0.50 0.10 0.08 0.10
## acq_avr 0.10 0.50 1.00 0.08 0.08 0.26
## vign_consist 0.12 0.10 0.08 1.00 0.09 0.16
## F1.Cons 0.07 0.08 0.08 0.09 1.00 0.10
## F2.Extr 0.95 0.10 0.26 0.16 0.10 1.00
## F3.EmSt 0.19 -0.03 -0.13 0.08 0.38 0.19
## F4.Agre 0.28 0.30 0.32 0.20 0.37 0.38
## F5.Opns 0.30 0.33 0.48 0.13 0.34 0.41
## F6.NVLoc -0.15 0.12 0.29 -0.17 -0.31 -0.11
## F1 0.96 -0.09 0.15 0.10 0.09 0.94
## F2 0.09 0.95 0.54 0.14 0.11 0.39
## F3.EmSt F4.Agre F5.Opns F6.NVLoc F1 F2
## VL_PROFICIENCIA_LP 0.10 0.18 0.18 -0.23 0.05 0.14
## VL_PROFICIENCIA_MT 0.13 0.13 0.15 -0.20 0.02 0.10
## trait_e_orig 0.19 0.38 0.41 -0.11 0.95 0.39
## trait_e_rec 0.19 0.28 0.30 -0.15 0.96 0.09
## acq_e -0.03 0.30 0.33 0.12 -0.09 0.95
## acq_avr -0.13 0.32 0.48 0.29 0.15 0.54
## vign_consist 0.08 0.20 0.13 -0.17 0.10 0.14
## F1.Cons 0.38 0.37 0.34 -0.31 0.09 0.11
## F2.Extr 0.19 0.38 0.41 -0.11 0.94 0.39
## F3.EmSt 1.00 0.30 0.15 -0.37 0.18 0.03
## F4.Agre 0.30 1.00 0.41 -0.14 0.32 0.39
## F5.Opns 0.15 0.41 1.00 -0.04 0.33 0.43
## F6.NVLoc -0.37 -0.14 -0.04 1.00 -0.11 0.08
## F1 0.18 0.32 0.33 -0.11 1.00 0.18
## F2 0.03 0.39 0.43 0.08 0.18 1.00
## Sample Size
## VL_PROFICIENCIA_LP VL_PROFICIENCIA_MT trait_e_orig
## VL_PROFICIENCIA_LP 10123 10123 10123
## VL_PROFICIENCIA_MT 10123 10123 10123
## trait_e_orig 10123 10123 10866
## trait_e_rec 10123 10123 10866
## acq_e 10123 10123 10866
## acq_avr 10123 10123 10866
## vign_consist 10090 10090 10830
## F1.Cons 10123 10123 10866
## F2.Extr 10123 10123 10866
## F3.EmSt 10123 10123 10866
## F4.Agre 10123 10123 10866
## F5.Opns 10123 10123 10866
## F6.NVLoc 10123 10123 10866
## F1 10123 10123 10866
## F2 10123 10123 10866
## trait_e_rec acq_e acq_avr vign_consist F1.Cons F2.Extr
## VL_PROFICIENCIA_LP 10123 10123 10123 10090 10123 10123
## VL_PROFICIENCIA_MT 10123 10123 10123 10090 10123 10123
## trait_e_orig 10866 10866 10866 10830 10866 10866
## trait_e_rec 10866 10866 10866 10830 10866 10866
## acq_e 10866 10866 10866 10830 10866 10866
## acq_avr 10866 10866 10866 10830 10866 10866
## vign_consist 10830 10830 10830 10830 10830 10830
## F1.Cons 10866 10866 10866 10830 10866 10866
## F2.Extr 10866 10866 10866 10830 10866 10866
## F3.EmSt 10866 10866 10866 10830 10866 10866
## F4.Agre 10866 10866 10866 10830 10866 10866
## F5.Opns 10866 10866 10866 10830 10866 10866
## F6.NVLoc 10866 10866 10866 10830 10866 10866
## F1 10866 10866 10866 10830 10866 10866
## F2 10866 10866 10866 10830 10866 10866
## F3.EmSt F4.Agre F5.Opns F6.NVLoc F1 F2
## VL_PROFICIENCIA_LP 10123 10123 10123 10123 10123 10123
## VL_PROFICIENCIA_MT 10123 10123 10123 10123 10123 10123
## trait_e_orig 10866 10866 10866 10866 10866 10866
## trait_e_rec 10866 10866 10866 10866 10866 10866
## acq_e 10866 10866 10866 10866 10866 10866
## acq_avr 10866 10866 10866 10866 10866 10866
## vign_consist 10830 10830 10830 10830 10830 10830
## F1.Cons 10866 10866 10866 10866 10866 10866
## F2.Extr 10866 10866 10866 10866 10866 10866
## F3.EmSt 10866 10866 10866 10866 10866 10866
## F4.Agre 10866 10866 10866 10866 10866 10866
## F5.Opns 10866 10866 10866 10866 10866 10866
## F6.NVLoc 10866 10866 10866 10866 10866 10866
## F1 10866 10866 10866 10866 10866 10866
## F2 10866 10866 10866 10866 10866 10866
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## VL_PROFICIENCIA_LP VL_PROFICIENCIA_MT trait_e_orig
## VL_PROFICIENCIA_LP 0 0.00 0
## VL_PROFICIENCIA_MT 0 0.00 0
## trait_e_orig 0 0.00 0
## trait_e_rec 0 0.00 0
## acq_e 0 0.00 0
## acq_avr 0 0.00 0
## vign_consist 0 0.00 0
## F1.Cons 0 0.00 0
## F2.Extr 0 0.00 0
## F3.EmSt 0 0.00 0
## F4.Agre 0 0.00 0
## F5.Opns 0 0.00 0
## F6.NVLoc 0 0.00 0
## F1 0 0.02 0
## F2 0 0.00 0
## trait_e_rec acq_e acq_avr vign_consist F1.Cons F2.Extr
## VL_PROFICIENCIA_LP 0 0 0 0 0 0
## VL_PROFICIENCIA_MT 0 0 0 0 0 0
## trait_e_orig 0 0 0 0 0 0
## trait_e_rec 0 0 0 0 0 0
## acq_e 0 0 0 0 0 0
## acq_avr 0 0 0 0 0 0
## vign_consist 0 0 0 0 0 0
## F1.Cons 0 0 0 0 0 0
## F2.Extr 0 0 0 0 0 0
## F3.EmSt 0 0 0 0 0 0
## F4.Agre 0 0 0 0 0 0
## F5.Opns 0 0 0 0 0 0
## F6.NVLoc 0 0 0 0 0 0
## F1 0 0 0 0 0 0
## F2 0 0 0 0 0 0
## F3.EmSt F4.Agre F5.Opns F6.NVLoc F1 F2
## VL_PROFICIENCIA_LP 0.00 0 0 0 0.00 0.00
## VL_PROFICIENCIA_MT 0.00 0 0 0 0.02 0.00
## trait_e_orig 0.00 0 0 0 0.00 0.00
## trait_e_rec 0.00 0 0 0 0.00 0.00
## acq_e 0.00 0 0 0 0.00 0.00
## acq_avr 0.00 0 0 0 0.00 0.00
## vign_consist 0.00 0 0 0 0.00 0.00
## F1.Cons 0.00 0 0 0 0.00 0.00
## F2.Extr 0.00 0 0 0 0.00 0.00
## F3.EmSt 0.00 0 0 0 0.00 0.01
## F4.Agre 0.00 0 0 0 0.00 0.00
## F5.Opns 0.00 0 0 0 0.00 0.00
## F6.NVLoc 0.00 0 0 0 0.00 0.00
## F1 0.00 0 0 0 0.00 0.00
## F2 0.01 0 0 0 0.00 0.00
##
## To see confidence intervals of the correlations, print with the short=FALSE option
names(sennav1)
## [1] "i03.NV.NV.10" "i04.A.Cmp.10" "i05.O.Img.10"
## [4] "i06.C.Ord.10" "i07.N.Vol.00" "i09.A.Cmp.10"
## [7] "i10.O.Img.10" "i11.C.Ord.10" "i12.N.Vol.00"
## [10] "i13.NV.NV.10" "i14.A.Tru.10" "i17.N.Anx.00"
## [13] "i24.O.Aes.10" "i25.A.Cmp.10" "i27.N.Dep.00"
## [16] "i29.A.Cmp.10" "i30.O.Int.10" "i32.N.Vol.00"
## [19] "i33.NV.NV.10" "i34.A.Tru.10" "i36.C.Conc.00"
## [22] "i37.N.Anx.10" "i39.A.Cmp.10" "i40.O.Aes.10"
## [25] "i42.N.Anx.00" "i44.A.Pol.00" "i46.C.Conc.00"
## [28] "i48.NV.NV.10" "i49.A.Cmp.10" "i51.C.Ord.00"
## [31] "i52.NV.NV.10" "i53.A.Pol.00" "i54.O.Int.10"
## [34] "i55.E.Act.10" "i56.NV.NV.10" "i60.NV.NV.00"
## [37] "i63.E.Act.10" "i66.O.Int.10" "i67.E.Soc.00"
## [40] "i70.O.Img.11" "i71.E.Soc.10" "i73.E.Soc.00"
## [43] "i74.NV.NV.10" "i75.E.Soc.10" "i76.E.Act.10"
## [46] "i77.C.SD.11" "i79.N.Vol.11" "i82.N.Vol.11"
## [49] "i83.C.Conc.11" "i84.E.Soc.11" "i87.E.Soc.11"
## [52] "i88.N.Dep.11" "i89.C.Achv.11" "i91.C.SD.11"
## [55] "missR" "admiss_missR" "acq_avr"
## [58] "acq_sd" "num_items" "Caderno"
## [61] "age2" "grade" "atrasado"
## [64] "atrasado2" "VL_PROFICIENCIA_LP" "VL_PROFICIENCIA_MT"
## [67] "vign_consist" "vign_consist_count" "F1.Cons"
## [70] "F2.Extr" "F3.EmSt" "F4.Agre"
## [73] "F5.Opns" "F6.NVLoc" "gender"
## [76] "rwn_id" "NM_REGIONAL_ESCOLA" "grade2"
## [79] "grade_5" "grade_9" "grade_10"
## [82] "freq" "cd_esc_grade" "rwn_id2"
## [85] "VL_PROFICIENCIA_LP_r" "VL_PROFICIENCIA_MT_r" "senna_it_rspnd"
## [88] "trait_e_orig" "trait_e_rec" "acq_e"
## [91] "F1" "F2"
sennav1 %>% ggplot(aes(x=F1 )) +
geom_histogram(color="white", fill="orange", alpha = .5) +
scale_x_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
theme_minimal()
sennav1 %>% ggplot(aes(x= F2 )) +
geom_histogram(color="white", fill="orange", alpha = .5) +
scale_x_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
theme_minimal()
sennav1 %>% ggplot(aes(x= F1, y = trait_e_rec)) +
geom_point(color="blue", fill="white", alpha = .5) +
scale_x_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
scale_y_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
theme_minimal()
sennav1 %>% ggplot(aes(x= F2, y = acq_e)) +
geom_point(color="blue", alpha = .5) +
scale_x_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
scale_y_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
theme_minimal()
sennav1 %>% ggplot(aes(x= F2, y = F1)) +
geom_point(color="red", alpha = .5) +
scale_x_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
scale_y_continuous(breaks = breaks_width(.5), limits = c(-3, 3)) +
theme_minimal()