library(ggplot2)
load("~/Dropbox/R Stat/senna.RData")

Gráficos com o ggplot ggplot de Hadley Wickham

install.packages("ggplot2")
library(ggplot2)

Seis habilidades socioemocionais no SENNA v1.0

load("~/Dropbox/R Stat/senna.RData")
names(sennav1)
##  [1] "SEXO"                "IDADE"               "Estado Civil"       
##  [4] "COR"                 "ESCOLARIDADE"        "E. Pai"             
##  [7] "E. Mae"              "RENDA"               "TRABALHO"           
## [10] "COM QUEM MORA"       "QTD PESSOAS NA CASA" "TV"                 
## [13] "lavadoura"           "Banheiro"            "Automovel"          
## [16] "Empreg"              "Microondas"          "Lav. Roupa"         
## [19] "DVD"                 "Geladeira"           "Freezer"            
## [22] "PC"                  "Motocicleta"         "F1.Cons"            
## [25] "F2.Extr"             "F3.EmSt"             "F4.Agre"            
## [28] "F5.Opns"             "F6.NVLoc"            "ID0"                
## [31] "MenL.P"              "F.L.P"               "Men.His"            
## [34] "F.His"               "Men.Ge"              "F.Ge"               
## [37] "Men.Mat"             "F.Mat"               "Men.Ciê"            
## [40] "F.Ciê"               "Men.Edu.Fí"          "F.Edu.Fí"           
## [43] "Men.Art"             "F.Artes"             "Men.Ing"            
## [46] "F.Ing"               "Men.LeiteP.T"        "F.LeiteP.T"         
## [49] "Faltas"              "s_faltas"            "m_notas"
ggplot(data=sennav1, aes(x=F1.Cons)) + geom_histogram()
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.

ggplot(data=sennav1, aes(x=F1.Cons)) + 
        geom_histogram(alpha =.4, fill ="blue", color="black", binwidth=.5) +
        labs(title="SENNA v1.0", x="Auto Gestão", y="freq") 

ggplot(data=sennav1, aes(x=F1.Cons, fill = factor(SEXO))) + 
        geom_histogram(alpha =.4, binwidth=.5, color = "black") +
        labs(title="SENNA v1.0", x="Auto Gestão", y="freq") 

ggplot(data=sennav1, aes(x=F1.Cons, fill = factor(SEXO))) + 
        geom_histogram(alpha =.4, binwidth=.5,  color = "black") +
        labs(title="SENNA v1.0", x="Auto Gestão", y="freq") +
        facet_grid(SEXO~.)

ggplot(data=sennav1, aes(x=F1.Cons, fill = factor(SEXO))) + 
        geom_histogram(alpha =.4, binwidth=.5,  color = "black") +
        labs(title="SENNA v1.0", x="Auto Gestão", y="freq") +
        facet_grid(SEXO~.) + theme_bw(base_family = "Avenir", base_size = 10) 

ggplot(data=sennav1, aes(x=F1.Cons, fill = factor(ESCOLARIDADE))) + 
        geom_density(alpha =.4) +
        labs(title="SENNA v1.0", x="Auto Gestão", y="freq", fill = "ano") +
         theme_bw() + scale_fill_grey(start = 0, end = .9)

ggplot(data=sennav1, aes(y=F1.Cons, x = factor(ESCOLARIDADE), fill = factor(ESCOLARIDADE))) + 
        geom_boxplot() +
        labs(title="SENNA v1.0", x="Ano escolar", y="Auto Gestão", fill = "Ano") +
         theme_bw() + scale_fill_grey(start = 0, end = .9)

ggplot(data=sennav1, aes(x=F1.Cons, y=m_notas)) + 
        geom_point() +
        labs(title="SENNA v1.0", x="Auto Gestão", y="Média das Notas")

ggplot(data=sennav1, aes(x=F1.Cons, y=m_notas)) + 
        geom_point() + geom_smooth(method="lm") +
        labs(title="SENNA v1.0", x="Auto Gestão", y="Média das Notas")

ggplot(data=sennav1, aes(x=F1.Cons, y=m_notas, color = factor(ESCOLARIDADE))) + 
        geom_point() +
        labs(title="SENNA v1.0", x="Auto Gestão", y="Média das Notas", color= "Ano")

ggplot(data=sennav1, aes(x=F1.Cons, y=m_notas, color = factor(ESCOLARIDADE))) + 
        geom_point() + geom_smooth(method="lm", se=FALSE) +
        labs(title="SENNA v1.0", x="Auto Gestão", y="Média das Notas", color= "Ano")

ggplot(data=sennav1, aes(x=F1.Cons, y=m_notas, color = factor(ESCOLARIDADE), shape = factor(ESCOLARIDADE))) + 
        geom_point() + geom_smooth(method="lm", se=FALSE) +
        labs(title="SENNA v1.0", x="Auto Gestão", y="Média das Notas", color= "Ano", shape = "Ano") +
          theme_bw() + scale_color_grey(start = .2, end = .9)

table(sennav1$IDADE)
## 
## 10 11 12 13 14 15 
##  6 15 22  3 19  1
table(sennav1$IDADE, sennav1$SEXO)
##     
##       0  1
##   10  3  3
##   11  6  9
##   12 13  9
##   13  3  0
##   14  8 11
##   15  0  1
table(sennav1$IDADE, sennav1$ESCOLARIDADE)
##     
##       5  7  9
##   10  6  0  0
##   11 15  0  0
##   12  0 22  0
##   13  0  2  1
##   14  0  0 19
##   15  0  0  1
names(sennav1)
##  [1] "SEXO"                "IDADE"               "Estado Civil"       
##  [4] "COR"                 "ESCOLARIDADE"        "E. Pai"             
##  [7] "E. Mae"              "RENDA"               "TRABALHO"           
## [10] "COM QUEM MORA"       "QTD PESSOAS NA CASA" "TV"                 
## [13] "lavadoura"           "Banheiro"            "Automovel"          
## [16] "Empreg"              "Microondas"          "Lav. Roupa"         
## [19] "DVD"                 "Geladeira"           "Freezer"            
## [22] "PC"                  "Motocicleta"         "F1.Cons"            
## [25] "F2.Extr"             "F3.EmSt"             "F4.Agre"            
## [28] "F5.Opns"             "F6.NVLoc"            "ID0"                
## [31] "MenL.P"              "F.L.P"               "Men.His"            
## [34] "F.His"               "Men.Ge"              "F.Ge"               
## [37] "Men.Mat"             "F.Mat"               "Men.Ciê"            
## [40] "F.Ciê"               "Men.Edu.Fí"          "F.Edu.Fí"           
## [43] "Men.Art"             "F.Artes"             "Men.Ing"            
## [46] "F.Ing"               "Men.LeiteP.T"        "F.LeiteP.T"         
## [49] "Faltas"              "s_faltas"            "m_notas"
summary(sennav1[ , 24:29 ])
##     F1.Cons         F2.Extr         F3.EmSt         F4.Agre     
##  Min.   :1.222   Min.   :2.143   Min.   :1.125   Min.   :2.250  
##  1st Qu.:2.958   1st Qu.:3.018   1st Qu.:2.803   1st Qu.:3.175  
##  Median :3.361   Median :3.371   Median :3.156   Median :3.500  
##  Mean   :3.501   Mean   :3.411   Mean   :3.303   Mean   :3.528  
##  3rd Qu.:4.181   3rd Qu.:3.714   3rd Qu.:3.938   3rd Qu.:3.883  
##  Max.   :5.000   Max.   :5.000   Max.   :4.900   Max.   :4.833  
##     F5.Opns         F6.NVLoc    
##  Min.   :1.625   Min.   :1.500  
##  1st Qu.:2.887   1st Qu.:2.000  
##  Median :3.308   Median :2.275  
##  Mean   :3.264   Mean   :2.386  
##  3rd Qu.:3.736   3rd Qu.:2.800  
##  Max.   :4.500   Max.   :4.375
summary(sennav1[ , 31:51 ])
##      MenL.P           F.L.P           Men.His           F.His      
##  Min.   : 3.000   Min.   : 0.000   Min.   : 4.000   Min.   :0.000  
##  1st Qu.: 5.000   1st Qu.: 1.000   1st Qu.: 7.000   1st Qu.:0.000  
##  Median : 7.000   Median : 3.000   Median : 7.500   Median :2.000  
##  Mean   : 6.715   Mean   : 4.167   Mean   : 7.592   Mean   :2.333  
##  3rd Qu.: 8.000   3rd Qu.: 6.000   3rd Qu.: 9.000   3rd Qu.:4.000  
##  Max.   :10.000   Max.   :18.000   Max.   :10.000   Max.   :9.000  
##  NA's   :1                         NA's   :1                       
##      Men.Ge            F.Ge          Men.Mat           F.Mat       
##  Min.   : 2.500   Min.   : 0.00   Min.   : 5.000   Min.   : 0.000  
##  1st Qu.: 7.000   1st Qu.: 0.00   1st Qu.: 7.000   1st Qu.: 0.000  
##  Median : 8.000   Median : 0.00   Median : 8.000   Median : 2.000  
##  Mean   : 7.577   Mean   : 1.47   Mean   : 7.923   Mean   : 3.545  
##  3rd Qu.: 8.500   3rd Qu.: 2.00   3rd Qu.: 9.000   3rd Qu.: 5.000  
##  Max.   :10.000   Max.   :11.00   Max.   :10.000   Max.   :19.000  
##  NA's   :1                        NA's   :1                        
##     Men.Ciê           F.Ciê      Men.Edu.Fí        F.Edu.Fí     
##  Min.   : 4.500   Min.   : 0   Min.   : 4.000   Min.   :0.0000  
##  1st Qu.: 6.000   1st Qu.: 0   1st Qu.: 8.000   1st Qu.:0.0000  
##  Median : 7.000   Median : 1   Median : 8.000   Median :0.0000  
##  Mean   : 7.192   Mean   : 2   Mean   : 8.338   Mean   :0.8923  
##  3rd Qu.: 8.500   3rd Qu.: 3   3rd Qu.: 9.000   3rd Qu.:2.0000  
##  Max.   :10.000   Max.   :10   Max.   :10.000   Max.   :4.0000  
##  NA's   :1        NA's   :1    NA's   :1        NA's   :1       
##     Men.Art          F.Artes         Men.Ing           F.Ing      
##  Min.   : 3.000   Min.   :0.000   Min.   : 3.000   Min.   :0.000  
##  1st Qu.: 6.000   1st Qu.:0.000   1st Qu.: 6.000   1st Qu.:0.000  
##  Median : 7.000   Median :1.000   Median : 7.000   Median :1.000  
##  Mean   : 6.877   Mean   :1.422   Mean   : 7.038   Mean   :1.133  
##  3rd Qu.: 8.000   3rd Qu.:2.000   3rd Qu.: 8.000   3rd Qu.:2.000  
##  Max.   :10.000   Max.   :8.000   Max.   :10.000   Max.   :4.000  
##  NA's   :1        NA's   :21      NA's   :1        NA's   :21     
##   Men.LeiteP.T     F.LeiteP.T      Faltas         s_faltas    
##  Min.   :2.000   Min.   :0.0   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.:5.000   1st Qu.:0.0   1st Qu.: 3.00   1st Qu.: 3.00  
##  Median :6.250   Median :2.0   Median :12.00   Median :12.00  
##  Mean   :6.091   Mean   :1.8   Mean   :17.33   Mean   :17.33  
##  3rd Qu.:8.000   3rd Qu.:2.0   3rd Qu.:27.25   3rd Qu.:27.25  
##  Max.   :9.000   Max.   :6.0   Max.   :72.00   Max.   :72.00  
##  NA's   :22      NA's   :21                                   
##     m_notas     
##  Min.   :4.667  
##  1st Qu.:6.312  
##  Median :7.333  
##  Mean   :7.325  
##  3rd Qu.:8.111  
##  Max.   :9.875  
##  NA's   :1
library(psych)
## 
## Attaching package: 'psych'
## 
## The following object is masked from 'package:ggplot2':
## 
##     %+%
describe(sennav1[ , 24:29 ])
##          vars  n mean   sd median trimmed  mad  min  max range  skew
## F1.Cons     1 66 3.50 0.85   3.36    3.51 0.86 1.22 5.00  3.78 -0.17
## F2.Extr     2 66 3.41 0.54   3.37    3.40 0.53 2.14 5.00  2.86  0.26
## F3.EmSt     3 66 3.30 0.80   3.16    3.32 1.07 1.12 4.90  3.78 -0.16
## F4.Agre     4 66 3.53 0.57   3.50    3.51 0.54 2.25 4.83  2.58  0.23
## F5.Opns     5 66 3.26 0.64   3.31    3.30 0.64 1.62 4.50  2.88 -0.49
## F6.NVLoc    6 66 2.39 0.58   2.27    2.34 0.44 1.50 4.38  2.88  0.93
##          kurtosis   se
## F1.Cons     -0.27 0.11
## F2.Extr      0.07 0.07
## F3.EmSt     -0.63 0.10
## F4.Agre     -0.35 0.07
## F5.Opns      0.18 0.08
## F6.NVLoc     0.71 0.07
describeBy(sennav1[ , 24:29 ], group=sennav1$ESCOLARIDADE)
## group: 5
##          vars  n mean   sd median trimmed  mad  min  max range  skew
## F1.Cons     1 21 4.07 0.83   4.44    4.16 0.82 2.11 5.00  2.89 -0.61
## F2.Extr     2 21 3.61 0.51   3.67    3.63 0.49 2.56 4.56  2.00 -0.25
## F3.EmSt     3 21 3.59 0.86   3.90    3.61 1.19 2.20 4.90  2.70 -0.29
## F4.Agre     4 21 3.74 0.46   3.60    3.71 0.44 3.00 4.70  1.70  0.48
## F5.Opns     5 21 3.37 0.79   3.38    3.45 0.74 1.62 4.50  2.88 -0.69
## F6.NVLoc    6 21 2.38 0.72   2.12    2.27 0.37 1.62 4.38  2.75  1.21
##          kurtosis   se
## F1.Cons     -0.72 0.18
## F2.Extr     -0.92 0.11
## F3.EmSt     -1.41 0.19
## F4.Agre     -0.78 0.10
## F5.Opns     -0.24 0.17
## F6.NVLoc     0.79 0.16
## -------------------------------------------------------- 
## group: 7
##          vars  n mean   sd median trimmed  mad  min  max range  skew
## F1.Cons     1 24 3.48 0.56   3.36    3.48 0.62 2.61 4.33  1.72  0.08
## F2.Extr     2 24 3.41 0.55   3.35    3.36 0.41 2.43 5.00  2.57  0.94
## F3.EmSt     3 24 3.38 0.66   3.38    3.37 0.74 2.38 4.56  2.19  0.11
## F4.Agre     4 24 3.49 0.59   3.50    3.46 0.62 2.50 4.75  2.25  0.36
## F5.Opns     5 24 3.35 0.44   3.31    3.35 0.57 2.46 4.23  1.77 -0.07
## F6.NVLoc    6 24 2.41 0.59   2.30    2.39 0.68 1.50 3.50  2.00  0.36
##          kurtosis   se
## F1.Cons     -1.38 0.11
## F2.Extr      1.19 0.11
## F3.EmSt     -1.26 0.13
## F4.Agre     -0.59 0.12
## F5.Opns     -0.77 0.09
## F6.NVLoc    -1.16 0.12
## -------------------------------------------------------- 
## group: 9
##          vars  n mean   sd median trimmed  mad  min  max range  skew
## F1.Cons     1 21 2.95 0.81   2.94    2.97 0.41 1.22 4.50  3.28 -0.19
## F2.Extr     2 21 3.21 0.51   3.21    3.22 0.42 2.14 4.07  1.93 -0.10
## F3.EmSt     3 21 2.93 0.76   3.00    2.96 0.83 1.12 4.06  2.94 -0.39
## F4.Agre     4 21 3.37 0.61   3.33    3.34 0.72 2.25 4.83  2.58  0.40
## F5.Opns     5 21 3.07 0.63   3.15    3.07 0.46 1.69 4.23  2.54 -0.22
## F6.NVLoc    6 21 2.36 0.42   2.30    2.35 0.44 1.60 3.10  1.50  0.34
##          kurtosis   se
## F1.Cons     -0.13 0.18
## F2.Extr     -0.81 0.11
## F3.EmSt     -0.50 0.17
## F4.Agre     -0.34 0.13
## F5.Opns     -0.50 0.14
## F6.NVLoc    -1.09 0.09
multi.hist(sennav1[ , 24:29 ], main = "SENNA v1.0")

pairs.panels(sennav1[ , c( 24:29, 50:51) ])

r <- cor(sennav1[ , c( 24:29, 50:51)] ,use="pairwise")
round(r, digits = 2)
##          F1.Cons F2.Extr F3.EmSt F4.Agre F5.Opns F6.NVLoc s_faltas m_notas
## F1.Cons     1.00    0.15    0.73    0.40    0.48    -0.32    -0.40    0.48
## F2.Extr     0.15    1.00    0.13    0.39    0.24     0.22    -0.22    0.11
## F3.EmSt     0.73    0.13    1.00    0.38    0.24    -0.39    -0.22    0.29
## F4.Agre     0.40    0.39    0.38    1.00    0.41    -0.08    -0.30    0.45
## F5.Opns     0.48    0.24    0.24    0.41    1.00     0.19    -0.14    0.15
## F6.NVLoc   -0.32    0.22   -0.39   -0.08    0.19     1.00     0.00   -0.25
## s_faltas   -0.40   -0.22   -0.22   -0.30   -0.14     0.00     1.00   -0.47
## m_notas     0.48    0.11    0.29    0.45    0.15    -0.25    -0.47    1.00
cor.plot(cor(sennav1[ , c(24:29, 50:51)], use="pair"))

Exercício 2: análise exploratória