Base do Teste de Criatividade figural Infantil (TCFI, Nakano, T. & Primi, (2012) A Estrutura Fatorial do Teste de Criatividade Figural Infantil. Psicologia: Teoria e Pesquisa, v. 28, n. 3, p. 275-283) link
Foi avaliado usando um método de avaliação de qualidade por juízes.
library(readxl)
setwd("~/Dropbox/R Stat/")
bd <- read_excel("bd_tcfi.xlsx")
bd$id_rwn <- as.numeric(rownames(bd))
source("http://www.labape.com.br/rprimi/R/sharedcount.R")
names(bd)
## [1] "ord0" "RaterN" "Rater" "ID" "At.1" "At.2 "
## [7] "At.3" "At3.01" "At3.02" "At3.03" "At3.04" "At3.05"
## [13] "At3.06" "At3.07" "At3.08" "At3.09" "At3.10" "Obs."
## [19] "id_letra" "id" "id_num_f" "idnum" "id_rwn"
# Quantos sujeitos
length(unique(bd$id))
## [1] 219
# Quantos juízes e quantas avaliações cada um fez
table(bd$Rater)
##
## 1 2 3 4 5 6
## 163 79 78 54 79 78
bd <- bd[!is.na(bd$ID), ]
library(reshape2)
names(bd)
## [1] "ord0" "RaterN" "Rater" "ID" "At.1" "At.2 "
## [7] "At.3" "At3.01" "At3.02" "At3.03" "At3.04" "At3.05"
## [13] "At3.06" "At3.07" "At3.08" "At3.09" "At3.10" "Obs."
## [19] "id_letra" "id" "id_num_f" "idnum" "id_rwn"
vars <- names(bd[ , c(4, 2, 23, 5:17)])
bd_long <- melt(bd[ , vars],
id.vars =1:3,
measured.vars=4:16)
bd_long2 <- dcast(data = bd_long[ , -3], formula = ID+variable~RaterN, value.var = "value")
# quantos idéias em comum cada juiz avaliou ?
source("http://www.labape.com.br/rprimi/R/sharedcount.R")
sharedcount(bd_long2[ , c(3:8)])
## X1 X2 out
## 1 alexandre andre 0
## 2 alexandre carla 0
## 3 alexandre everson 843
## 4 alexandre jurandir 0
## 5 alexandre marco 604
## 6 andre carla 898
## 7 andre everson 0
## 8 andre jurandir 0
## 9 andre marco 614
## 10 carla everson 0
## 11 carla jurandir 0
## 12 carla marco 615
## 13 everson jurandir 0
## 14 everson marco 623
## 15 jurandir marco 662
names(bd_long2)
## [1] "ID" "variable" "alexandre" "andre" "carla" "everson"
## [7] "jurandir" "marco"
table(bd_long2$carla, bd_long2$andre)
##
## 1 2 3 4 5
## 1 102 71 18 2 8
## 2 81 194 56 17 5
## 3 18 67 67 19 3
## 4 4 36 87 37 6
library(psych)
describe(bd_long2[ , 3:8])
## vars n mean sd median trimmed mad min max range skew
## alexandre 1 844 3.18 0.75 3 3.19 0.00 2 5 3 0.17
## andre 2 900 2.27 0.98 2 2.18 1.48 1 5 4 0.59
## carla 3 906 2.34 1.03 2 2.30 1.48 1 4 3 0.32
## everson 4 864 2.22 1.08 2 2.10 1.48 1 5 4 0.77
## jurandir 5 702 2.27 1.11 2 2.31 1.48 0 5 5 -0.19
## marco 6 2117 2.07 0.85 2 2.20 0.00 0 4 4 -1.01
## kurtosis se
## alexandre -0.34 0.03
## andre -0.02 0.03
## carla -1.03 0.03
## everson 0.02 0.04
## jurandir 0.46 0.04
## marco 1.15 0.02
multi.hist(bd_long2[ , 3:8])
pairs.panels(bd_long2[ , 3:8])
corPlot(bd_long2[ , 3:8],numbers=TRUE,upper=FALSE,diag=FALSE)
library(d3heatmap)
d3heatmap(cor(bd_long2[ , 3:8], use="pair"),
symn= TRUE, symm = TRUE,
k_row = 1, k_col =1)
##### Concordância e kappa
names(bd_long2)
## [1] "ID" "variable" "alexandre" "andre" "carla" "everson"
## [7] "jurandir" "marco"
library(irr)
## Loading required package: lpSolve
agree(bd_long2[, c(8, 3)])
## Percentage agreement (Tolerance=0)
##
## Subjects = 604
## Raters = 2
## %-agree = 28.3
agree(bd_long2[ , c(8, 3)], tolerance = 1)
## Percentage agreement (Tolerance=1)
##
## Subjects = 604
## Raters = 2
## %-agree = 81
icc(bd_long2[, c(8, 3)], model="twoway", type="consistency")
## Single Score Intraclass Correlation
##
## Model: twoway
## Type : consistency
##
## Subjects = 604
## Raters = 2
## ICC(C,1) = 0.308
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(603,603) = 1.89 , p = 4.37e-15
##
## 95%-Confidence Interval for ICC Population Values:
## 0.234 < ICC < 0.379